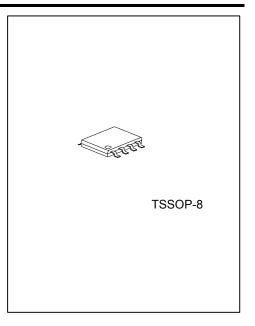
U74AHC3G14 CMOS IC

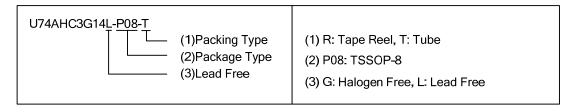
INVERTING SCHMITT TRIGGER

DESCRIPTION

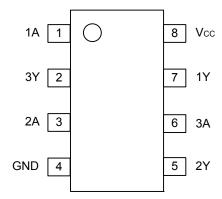

The U74AHC3G14 is a high-speed inverting Schmitt trigger. The **U74AHC3G14** provides three inverting buffers with the action of Schmitt trigger. The trigger is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

FEATURES

- * Low power supply 1.0 µA at 5.5V
- * Wide supply voltage range from 2V to 5.5V
- * Up to 5.5V inputs accept voltages
- * Max t_{PD} of 8.6 ns at V_{CC} = 5.0V, C_L = 15pF
- * Symmetrical output impedance
- * High noise immunity
- * Balanced propagation delays

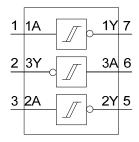

APPLICATION

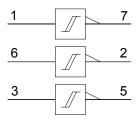
- * Astable multivibrators
- * Monostable multivibrators
- * Wave and pulse shapers


ORDERING INFORMATION

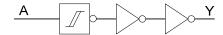
Ordering	Package	Dooking	
Lead Free	Lead Free Halogen Free		Packing
U74AHC3G14L-P08-R	U74AHC3G14G-P08-R	TSSOP-8	Tape Reel
U74AHC3G14L-P08-T	U74AHC3G14G-P08-T	TSSOP-8	Tube

www.unisonic.com.tw 1 of 6 QW-R502-686.A


■ PIN CONFIGURATION


■ FUNCTION TABLE

INPUT	OUTPUT
nA	nY
L	Н
Н	L


■ LOGIC SYMBOL

■ IEC LOGIC SYMBOL

■ LOGIC DIAGRAM (one driver)

U74AHC3G14 cmos ic

■ ABSOLUTE MAXIMUM RATING (unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{CC}	-0.5~7.0	V
Input Voltage	V_{IN}	-0.5~7.0	V
Output Voltage	V_{OUT}	0~V _{CC}	V
Input Diode Current (V _I < -0.5V)	I_{lK}	-20	mA
Output Diode Current ($V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$)	I _{OK}	±20	mA
Output source or sink current (-0.5V < V _O < V _{CC} + 0.5V)	lout	±25	mA
V _{CC} or GND Current	I _{CC}	±75	mA
Power Dissipation	P_D	250	mW
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

■ RECOMMENDED OPERATING COMDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V _{CC}	2.0	5.0	5.5	V
Input Voltage	Vı	0		5.5	٧
Output Voltage	Vo	0		Vcc	
Operating Temperature	T _A	-40	+25	+125	°C

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$I_{OH} = -50 \mu A, V_{CC} = 2.0V$	1.9	2.0		
		$I_{OH} = -50 \mu A, V_{CC} = 3.0 V$	2.9	3.0		
High-Level Output Voltage	V_{OH}	$I_{OH} = -50 \mu A, V_{CC} = 4.5V$	4.4	4.5		V
		$I_{OH} = -4.0 \text{ mA}, V_{CC} = 3.0 \text{V}$	2.58			
		$I_{OH} = -8.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	3.94			
		$I_{OH} = 50 \mu A, V_{CC} = 2.0 V$		0	0.1	
		$I_{OH} = 50 \mu A, V_{CC} = 3.0 V$		0	0.1	
Low-Level Output Voltage	V_{OL}	$I_{OH} = 50 \mu A, V_{CC} = 4.5 V$		0	0.1	V
		$I_{OH} = 4.0 \text{ mA}, V_{CC} = 3.0 \text{V}$			0.36	
		$I_{OH} = 8.0 \text{ mA}, V_{CC} = 4.5 \text{V}$			0.36	
Input Leakage Current	I _{I(LEAK)}	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 5.5V$, $I_{OUT} = 0$ A			0.1	μΑ
Quiescent Supply Current	Icc	V _{IN} = V _{CC} or GND, I _{OUT} = 0			1.0	μΑ
Input Capacitance	C _{IN}			1.5	10	pF

■ TRANSFER CHARACTERISTICS (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{CC} = 3.0V$		-	2.2	
Positive-Going Threshold	V_{T+}	$V_{CC} = 4.5V$		-	3.15	V
		V _{CC} = 5.5V		-	3.85	
		V _{CC} = 3.0V	0.9	-		
Negative-Going Threshold	V_{T-}	$V_{CC} = 4.5V$	1.35	-		V
		V _{CC} = 5.5V	1.65	-		
		V _{CC} = 3.0V	0.3	-	1.2	
Hysteresis (V _{T+} - V _{T-})	V_{H}	$V_{CC} = 4.5V$	0.4).4 - 1.4	V	
		V _{CC} = 5.5V	0.5	_	1.6	

^{2.} Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

U74AHC3G14 **CMOS IC**

AC CHARACTERISTICS ($T_A = 25$ °C, GND = 0V, $t_R = t_F \le 3.0$ ns)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{CC} = 3.3V, C_L = 15pF$		4.2		ns
		$V_{CC} = 3.3V, C_L = 50pF$		6.0		
		V_{CC} = 3.0 to 3.6V, C_L = 15pF			12.8	
Propagation Delay from Input (nA) to Output (nY)	t _{PLH} /t _{PHL} (t _{PD})	V_{CC} = 3.0 to 3.6V, C_L = 50pF			16.3	
		$V_{CC} = 5.0V, C_L = 15pF$		3.2		
		$V_{CC} = 5.0V, C_L = 50pF$		4.6		
		V_{CC} = 4.5 to 5.5V, C_L = 15pF			8.6	
		V_{CC} = 4.5 to 5.5V, C_L = 50pF			10.6	

OPERATING CHARACTERISTICS (T_A =25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	TYP	UNIT
Power dissipation capacitance per gate	C_PD	C _L = 15 pF, f=10MHz (Note1, 2)	7.5	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_1 \times N + \Sigma (C_L \times V_{CC}^2 \times f_0)$ where:

 f_I = input frequency in MHz;

 f_O = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs. 2. The condition is V_1 = GND to V_{CC} .

■ WAVEFORMS

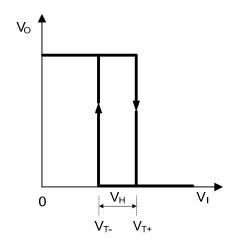


Fig.1 Transfer characteristic

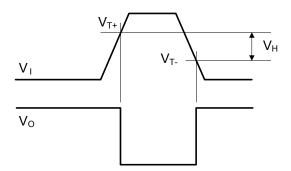
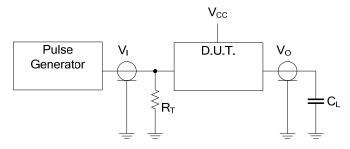
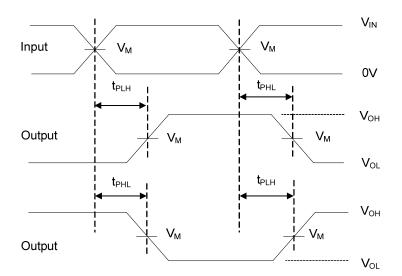



Fig.2 Definitions of $V_{T+},\,V_{T-}\,$ and V_H

U74AHC3G14

■ TEST CIRCUIT AND WAVEFORMS



Definitions for test circuit:

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

	Inp	uts	\/	0	
V _{CC}	V_{IN}	t_R , t_F	V_{M}	CL	
2.21/	GND to V _{CC}	≤3ns	V _{CC} /2	15pF	
3.3V	GND to V _{CC}	≤3ns	V _{CC} /2	50pF	
3.0 to3.6V	GND to V _{CC}	≤3ns	V _{CC} /2	15pF	
	GND to V _{CC}	≤3ns	V _{CC} /2	50pF	
5.0)/	GND to V _{CC}	≤3ns	V _{CC} /2	15pF	
5.0V	GND to V _{CC}	≤3ns	V _{CC} /2	50pF	
4.5.15.51/	GND to V _{CC}	≤3ns	V _{CC} /2	15pF	
4.5 to 5.5V	GND to V _{CC}	≤3ns	V _{CC} /2	50pF	

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

CMOS IC