

UNISONIC TECHNOLOGIES CO., LTD

UTRS3085

Preliminary

FAIL-SAFE, 500KBPS, RS-485 / RS-422 TRANSCEIVERS WITH ±15KV ESD-PROTECTED

DESCRIPTION

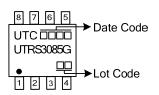
The UTC **UTRS3085** high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. The device features fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be logic high if all transmitters on a terminated bus are disabled (high impedance). The UTC **UTRS3085** offer higher driver output slew-rate limits, allowing transmission up to 500kbps.

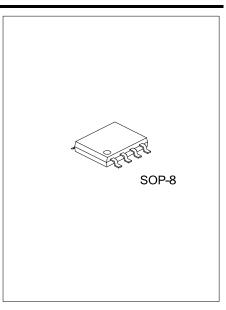
The transceiver typically draws 375 μA of supply current when unloaded or when fully loaded with the drivers disabled.

A device has a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus.

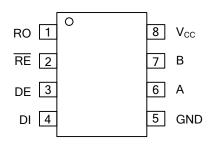
FEATURES

* True fail-safe receiver while maintaining EIA/TIA-485 compatibility.

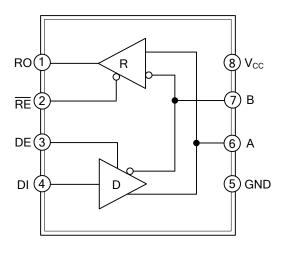

- * Enhanced slew-rate limiting facilitates Error-Free data transmission.
- * 5.0V single power supply.
- * 1µA low-current shutdown mode.
- * Allow up to 256 transceivers on the Bus.
- * HBM ±15kV ESD-protected.
- * Driver short circuit current limit.
- * Thermal shutdown for overload protection.


ORDERING INFORMATION

Ordering Number	Package	Packing
UTRS3085G-S08-R	SOP-8	Tape Reel


UTRS3085 <u>G-S08-R</u> (1)Packing Type (2)Package Type	(1) R: Tape Reel (2) S08: SOP-8	
(3)Green Package	(3) G: Halogen Free and Lead Free	

MARKING


■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	RO	Receiver output.
2	RE	Receiver output enable. Drive \overline{RE} low to enable RO; RO is high impedance when \overline{RE} is high. Drive \overline{RE} high and DE low to enter low-power shutdown mode.
3	DE	Driver output enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive \overline{RE} high and DE low to enter low-power shutdown mode.
4	DI	Driver input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
5	GND	Ground
6	А	Non-inverting receiver input and non-inverting driver output
7	В	Inverting receiver input and inverting driver output
8	V _{CC}	Positive supply, 4.75V≤V _{CC} ≤5.25V

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARA	METER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	+7.0	V	
Control Input Voltage (RE , DE)		-0.3~(V _{CC} +0.3)	V	
Special Input Voltage (H/F, SRL,	TXP, RXP).		-0.3~(V _{CC} +0.3)	V
Driver Input Voltage		DI	-0.3~(V _{CC} +0.3)	V
Driver Output Voltage (A, B, Y, Z)		±13	V	
Receiver Input Voltage (A, B)			±13	V
Receiver Input Voltage, Full Duple	ex (A, B)		±25	V
Receiver Output Voltage (RO)			-0.3~(V _{CC} +0.3)	V
Continuous Power Dissipation	Derate 5.88mW/°C above +70°C		471	mW
Operating Temperature Ranges		T _{OPR}	-40~+85	°C
Storage Temperature Range		T _{STG}	-65~+150	°C
Lead Temperature (Soldering, 10	sec)	TL	+300	°C

Note: Absolute maximum ratings are only stress ratings and it is not implied for functional device operation. Absolute maximum ratings are the values beyond which the device will be damaged permanently.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DRIVER		·				
Differential Driver Output (No Load)	V _{OD1}	Fig.1			5.0	V
Differential Driver Output	V	Fig.1, R=50Ω (RS-422)	1.8			V
Differential Driver Output	V _{OD2}	Fig.1, R=27Ω (RS-485)	1.2			V
Change in Magnitude of Differential Output Voltage (Note 2)	ΔV_{OD}	Fig.1, R=50Ω or R=27Ω			0.2	v
Driver Common-Mode Output Voltage	V _{oc}	Fig.1, R=50Ω or R=27Ω			3	V
Change In Magnitude of Common-Mode Voltage (Note 2)	ΔV_{OC}	Fig.1, R=50Ω or R=27Ω			0.2	V
Input High Voltage	V _{IH1}	DE, DI, \overline{RE} , H/ \overline{F} , TXP, RXP	2.0			V
Input Low Voltage	V _{IL1}	DE, DI, RE, H/F, TXP, RXP			0.8	V
DI Input Hysteresis	V _{HYS}	SRL=V _{CC} or Unconnected		100		mV
	I _{IN1}	DE, DI, RE			±2	μA
SRL Input Current	I _{IN2}	H/F, TXP, RXP, Internal Pull-down	10		40	μA
Input High Voltage	V _{IH2}	SRL	V _{CC} -0.8			V
Input Middle Voltage	V _{IM2}	SRL (Note 3)	$0.4V_{CC}$		0.6V _{CC}	V
Input Low Voltage	V _{IL2}	SRL			0.8	V
SRL Input Current	I _{IN3}	SRL=V _{CC}			75	μA
	IN3	SRL=GND (Note 3)	-75			μA
Input Current (A and B)	I _{IN4}	DE=GND, V _{IN} =12V			125	μA
Full Duplex	•11114	V _{CC} =GND or 5.25V V _{IN} =-7V			-75	μA
Output Leakage (Y and Z)	Io	DE=GND, V _{IN} =12V			125	μA
Full Duplex	.0	VCC=GND or 5.25V V _{IN} =-7V	-100			μA
Driver Short-Circuit Output		-7V≤V _{OUT} ≤V _{CC}	-250		0.70	mA
Current (Note 4)		0V≤V _{OUT} ≤12V			250	mA
		0V≤V _{OUT} ≤V _{CC}	±25			mA

 $(V_{CC}$ =+5.0V ±5%, T_A=T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC}=+5.0V and T_A=+25°C) (Note 1)

■ DC ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
RECEIVER							
Receiver Differential Threshold Voltage	V _{TH}	-7V≤V _{CM} ≤+12V			-300		mV
Receiver Input Hysteresis	ΔV_{TH}				25		mV
Receiver Output High Voltage	V _{OH}	I _O =-4mA, V _{ID} =-50m∨	/	V _{CC} -1.5			V
Receiver Output Low Voltage	V _{OL}	I _O =4mA, V _{ID} =-200m\	V			0.4	V
Three-State Output Current at Receiver	I _{OZR}	0.4V≤V ₀ ≤2.4V				±1	μA
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤+12V		96			kΩ
Receiver Output Short-Circuit Current	I _{OSR}	0V≤V _{RO} ≤V _{CC}		±7		±95	mA
SUPPLY CURRENT							
		No Load,	DE=V _{CC}		430	900	μA
Quantu Quarant		RE =DI=GND or V _{CC} , SRL=V _{CC}	DE=GND		375	600	μA
Supply Current	LCC.	No Load,	DE=V _{CC}		475	1000	μA
		RE =DI=GND or V _{CC} , SRL=GND	DE=GND		420	800	μA
Supply Current in Shutdown Mode	I _{SHDN}	DE=GND, $V_{\overline{RE}} = V_{CC}$			1	10	μA

Notes: 1. All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

2. ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

3. The SRL pin is internally biased to V_{CC}/ 2 by a $100k\Omega/100k\Omega$ resistor divider. It is guaranteed to be V_{CC}/ 2 if left unconnected.

4. Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during current limiting.

■ SWITCHING CHARACTERISTICS

 $(V_{CC}$ =+5.0V ±5%, T_A=T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{CC}=+5.0V and T_A=+25°C)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNIT
	t _{DPLH}			100		ns
Driver Input to Output	t _{DPHL}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		100		ns
Driver Output Skew t _{DPLH} - t _{DPHL}	t _{DSKEW}	Fig.3 and 5, R_{DIFF} =54 Ω , C_{L1} = C_{L2} =100pF		-3	±100	ns
Driver Rise or Fall Time	t _{DR} , t _{DF}	Fig.3 and 5, R _{DIFF} =54Ω, C _{L1} =C _{L2} =100pF		200		ns
Maximum Data Rate	f _{MAX}		500			kbps
Driver Enable to Output High	t _{DZH}	Fig.4 and 6, C _L =100pF, S2 Closed			2500	ns
Driver Enable to Output Low	t _{DZL}	Fig.4 and 6, C _L =100pF, S1 Closed			2500	ns
Driver Disable Time from Low	t _{DLZ}	Fig.4 and 6, C _L =15pF, S1 Closed			100	ns
Driver Disable Time from High	t _{DHZ}	Fig.4 and 6, C _L =15pF, S2 Closed			100	ns
Receiver Input to Output	t _{RPLH} , t _{RPHL}	Fig.7 and 9, $ V_{ID} \ge 2.0V$; Rise and Fall Time of $V_{ID} \le 15$ ns		200		ns
t _{RPLH} - t _{RPHL} Differential Receiver Skew	t _{RSKD}	Fig.7 and 9, $ V_{ID} $ ≥2.0V; Rise and Fall Time of V_{ID} ≤15ns		50		ns
Receiver Enable to Output Low	t _{RZL}	Fig.2 and 8, C _L =100pF, S1 Closed		100		ns
Receiver Enable to Output High	t _{RZH}	Fig.2 and 8, C _L =100pF, S2 Closed		60		ns
Receiver Disable Time from Low	t _{RLZ}	Fig.2 and 8, C _L =100pF, S1 Closed		300		ns
Receiver Disable Time from High	t _{RHZ}	Fig.2 and 8, C_L =100pF, S2 Closed		200		ns
Time to Shutdown	t _{SHDN}	Note 1		200		ns
Driver Enable from Shutdown to Output High	t _{DZH(SHDN)}	Fig.4 and 6, C_L =15pF, S2 Closed			4500	ns
Driver Enable from Shutdown to Output Low	t _{DZL(SHDN)}	Fig.4 and 6, C_L =15pF, S1 Closed			4500	ns
Receiver Enable from Shutdown to Output High	t _{RZH(SHDN)}	Fig.2 and 8, C_L =100pF, S2 Closed			3500	ns
Receiver Enable from Shutdown to Output Low	t _{RZL(SHDN)}	Fig.2 and 8, C_L =100pF, S1 Closed			3500	ns

Note: The device is put into shutdown by bringing \overline{RE} high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

TRANSMITTING						
	INPUTS	OUTPL	JTS			
RE	DE	DI	B/Z	A/Y		
Х	1	1	0	1		
Х	1	0	1	0		
0	0	Х	High-Z	High-Z		
1 0 X			Shutdo	own		

RECEIVING

	INPUTS	OUTPUT	
RE	DE	A-B	RO
0	Х	≥-0.05V	1
0	Х	≤-0.2V	0
0	Х	Open/Shorted	1
1	1	Х	High-Z
1	0	Х	Shutdown

X = Don't care

Shutdown mode, driver and receiver outputs high impedance

Preliminary

TEST CIRCUIT

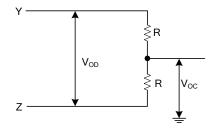


Fig. 1 Driver DC Test Circuit

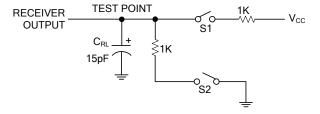


Fig. 2 Receiver Enable/Disable Timing Test Load

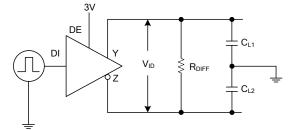


Fig. 3 Driver Timing Test Circuit

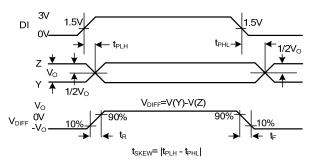


Fig. 5 Driver Propagation Delays

1.5V

t_{PHI}

Input

Fig. 7 Receiver Propagation Delays

Output

1.5V

t_{PLH} →

VOH

VOL

RO

1V A

-1V B

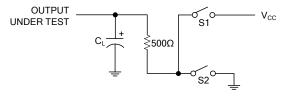


Fig. 4 Driver Enable/Disable Timing Test Load

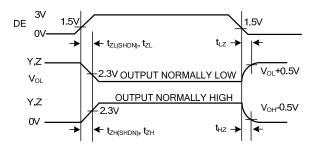


Fig. 6 Driver Enable and Disable Times

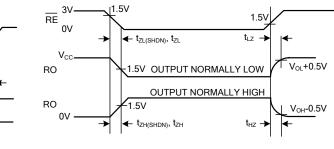


Fig. 8 Receiver Enable and Disable Times

■ TEST CIRCUIT (Cont.)

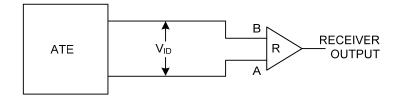
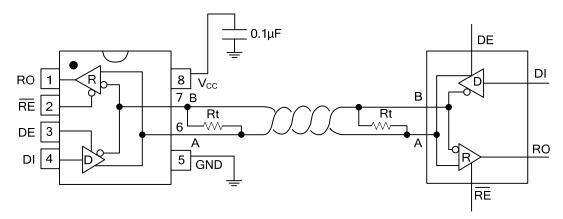



Fig. 9 Receiver Propagation Delay Test Circuit

TYPICAL APPLICATION CIRCUIT

Note: Pin labels Y and Z on timing, test, and waveform diagrams refer to pins A and B when DE is high.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

