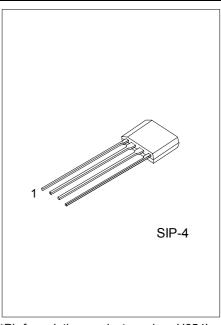
UTC UNISONIC TECHNOLOGIES CO., LTD

H654

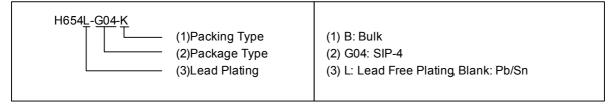

LINEAR INTEGRATED CIRCUIT

COMPLEMENTARY OUTPUT HALL EFFECT LATCH

DESCRIPTION

The UTC H654 is integrated Hall sensors with complementary output drivers designed for electronic commutation of brushless DC Fan. It composed of an on-chip Hall voltage generator, a differential amplifier, Schmitt trigger, an open-collector output on a single chip. Furthermore, an internal bandgap regulator allows temperature compensated operations and a wide operating supply range. An on-chip protection diode is implemented to prevent reverse power fault.

When the magnetic flux density larger than threshold BOP, DO will be turned on(low) and DOB be turned off(high). The output state is held until the magnetic flux density is lower than B_{RP}, and then DO is reversal to turned off and DOB turned on.

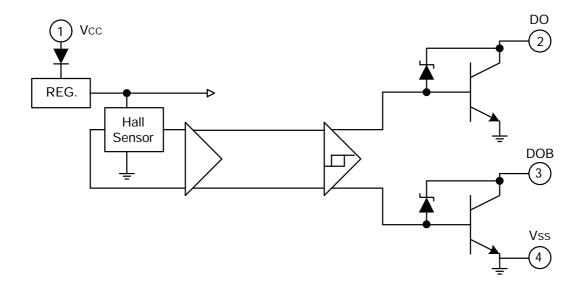

*Pb-free plating product number: H654L

FEATURES

- * Operate from 3.5V ~ 20V supply voltage.
- * On-chip Hall sensor with two different sensitivity and hysteresis settings.
- * High output sinking capability up to 300mA for driving large load.
- * Lower current change rate reduces the peak output voltages during
- * Build-in protecting diode for chip reversal power connecting.(Note1)

ORDERING INFORMATION

Order N	Dookogo	Dooking		
Normal	Lead Free Plating	Package	Packing	
H654-G04-K	H654L-G04-K	SIP-4	Bulk	



PIN DESCRIPTION

PIN NO.	PIN NAME	P/I/O	DESCRIPTION
1	V_{CC}	Р	Positive Power Supply
2	DO	0	Output Pin
3	DOB	0	Output Pin
4	V_{SS}	Р	Ground

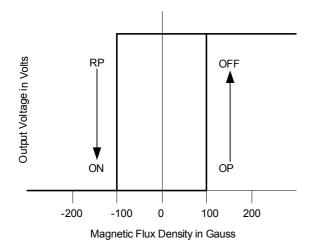
www.unisonic.com.tw 1 of 5

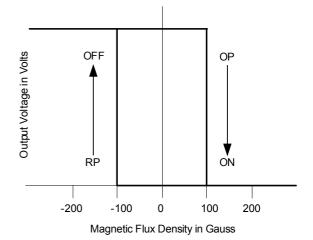
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Ta=25)

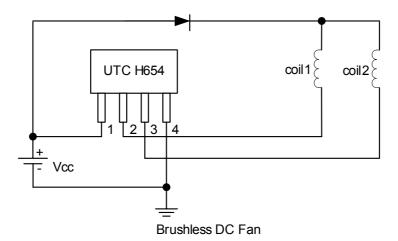
PARAMETER	SYMBOL	RATINGS	UNIT		
Supply Voltage		V_{CC}	20	V	
Reverse V _{CC} Polarity Voltage		V_{RCC}	-35	V	
Output OFF Voltage	$V_{\sf CE}$	50	V		
Magnetic flux density	В	Unlimited			
	Continuous		0.3		
Output ON Current	Hold	lc	0.4	Α	
	Peak (Start Up)		0.7		
Power Dissipation		P_D	500	mW	
Junction Temperature		T_J	+150		
Operating Temperature		T_OPR	-20 ~ +85		
Storage Temperature		T _{STG}	-65 ~ +150		

Note 1: Output Zener protection voltage

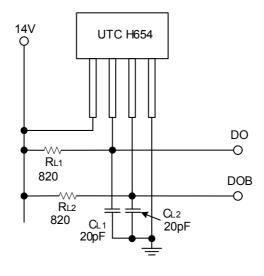

■ **ELECTRICAL CHARACTERISTICS** (Ta =25 , unless otherwise specified.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low Supply Voltage	V_{CE}	V _{CC} =3.5V, I _L =100mA		0.4		V
Supply Voltage	V _{CC}		3.5		20	V
Output Saturation Voltage	V _{CE(SAT)}	V _{CC} =14V, I _L =300mA		0.3	0.6	V
Output Leakage Current	I _{CEX}	V _{CE} =14V, V _{CC} =14V		<0.1	10	μA
Supply Current	I _{cc}	V _{CC} =20V, Output Open		16	25	mA
Output Rise Time	t _R	V _{CC} =14V, R _L =820Ω, C _L =20pF		3.0	10	μS
Output Falling Time	t _F	V _{CC} =14V, R _L =820Ω, C _L =20pF		0.3	1.5	μS
Switch Time Differential	Δt	V _{CC} =14V, R _L =820Ω, C _L =20pF		3.0	10	μS

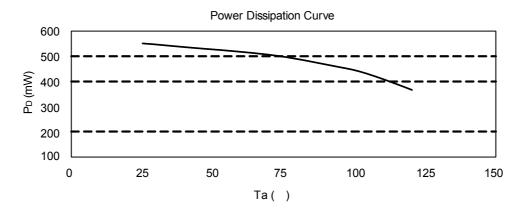
■ MAGNETIC CHARACTERISTICS


PARAMETR	CVMDOL	Ta= 25		Ta= 0	LINUT		
PARAMETR	SYMBOL	MIN	MAX	MIN	MAX	UNIT	
Operate Point	B _{OP}		100		100	G	
Release Point	B_RP	-100		-100		G	
Hysteresis	B _{HYS}	50	200	30	200	G	

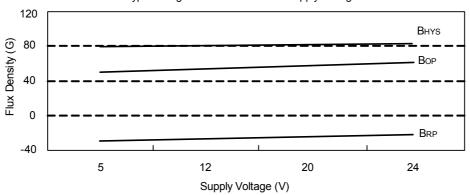
■ HYSTERESIS CHARACTERISTICS



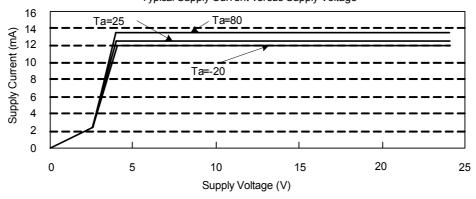
■ TYPICAL APPLICATION CIRCUIT



TEST CIRCUIT



PERFORMANCE CHARACTERISTICS


Ta()	25	50	60	70	80	85	90	95	100	105	110	115	120
P _D (mW)	550	525	515	505	485	475	465	455	445	425	405	385	365

Typical Magnetic Switch Point VS. Supply Voltage

Typical Supply Current versus Supply Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.