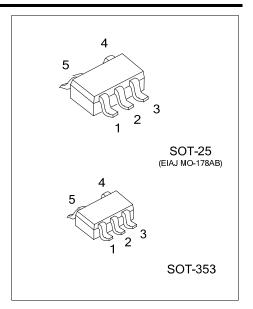
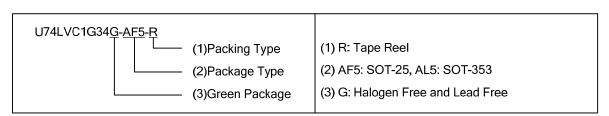
U74AHC1G66 cmos ic

BILATERAL SWITCH

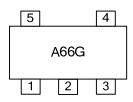

■ DESCRIPTION

The UTC **U74AHC1G66** is an analog switch which transmits signals from pin(Y or Z) to pin (Z or Y) with an active HIGH enable input pin (E). When pin E is LOW, the switch is turned off.

■ FEATURES

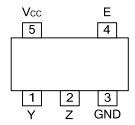

- * Operation voltage range: 2~5.5V
- * Low power dissipation
- * Very low ON-resistance: 26 Ω (typ.) at Vcc=3.0V

16Ω (typ.) at V_{CC} =4.5V 14Ω (typ.) at V_{CC} =5.5V



■ ORDERING INFORMATION

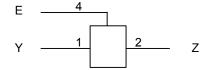
Ordering Number	Package	Packing
U74LVC1G34G-AF5-R	SOT-25	Tape Reel
U74LVC1G34G-AL5-R	SOT-353	Tape Reel

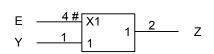


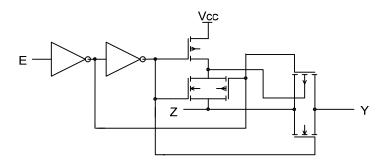
■ MARKING

www.unisonic.com.tw 1 of 7

■ PIN CONFIGURATION


■ PIN DESCRIPTION


PIN NO.	SYMBOL	DESCRIPTION
1	Υ	independent input/output
2	Z	independent output/input
3	GND	ground
4	Е	enable input
5	V _{CC}	supply voltage


■ FUNCTION TABLE (each gate)

INPUT E	SWITCH
Н	ON
L	OFF

■ LOGIC DIAGRAM (positive logic)

U74AHC1G66 cmos ic

■ ABSOLUTE MAXIMUM RATINGS (unless otherwise specified)(Note 2)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.5~7	V
Enable Input Voltage	VE	-0.5~7	V
Enable Input Clamp Current	I _{EK}	-20	mA
Switch Diode Current	I _{SK}	±20	mA
On-State Switch Current(-0.5V <v<sub>OS<v<sub>CC+0.5V)</v<sub></v<sub>	Is	±25	mA
V _{CC} or GND Current	Icc	±75	mA
Power Dissipation	P _D	250	mW
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. To avoid drawing V_{CC} current out of pin Z, when switch current flows into pin Y, the voltage drop across the bidirectional switch must not exceed 0.4V. If the switch current flows into pin Z, no V_{CC} current will flow out of pin Y. In this case there is no limit for the voltage drop across the switch, but the voltage at pins Y and Z may not exceed V_{CC} or GND.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc		2	5.0	5.5	V
Enable Input Voltage	VE		0		5.5	V
Switch Voltage	Vs		0		Vcc	V
land Tangitian Diagram Fall Data	Δt	V _{CC} =3.3+0.3V			100	ns/V
Input Transition Rise or Fall Rate	$\overline{\Delta V}$	V _{CC} =5.0+0.5V			20	ns/V
Operating Temperature	T _A		-40	25	125	°C

■ STATIC CHARACTERISTICS

PARAMET	ER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Low-Level Enable Input Leakage Current State Switch Current ON ON-Resistance (Peak) (Note)		V _{CC} =2.0V	1.5			V	
	High-Level	V_{IH}	V _{CC} =3.0V	2.1			V
			V _{CC} =5.5V	3.85			V
input voitage			V _{CC} =2.0V			0.5	V
	Low-Level	V_{IL}	V _{CC} =3.0V			0.9	V
			V _{CC} =5.5V			1.65	V
Enable Input Leaka	age Current	I _{E(LEAK)}	V_{CC} =5.5V, V_E = V_{CC} or GND			0.1	μΑ
State Switch	OFF		V_{CC} =5.5V, $ V_s $ = V_{CC} -GND			0.1	μΑ
Current	ON	I _S	V _{CC} =5.5V			0.1	μΑ
			V_{CC} =2.0V, V_{IS} = V_{CC} to GND, I_{S} =1mA		148		Ω
ON-Resistance (Pe	eak) (Note)	R _{ON(PEAK)}	V_{CC} =3.0V~3.6V, V_{Is} = V_{CC} to GND, I_{S} =10mA		28	50	Ω
		, ,	V_{CC} =4.5V~5.5V, V_{Is} = V_{CC} to GND, I_{S} =10mA		15	30	Ω
			V_{CC} =2.0V, V_{IS} = V_{CC} , I_{S} =1mA		28		Ω
			V_{CC} =2.0V, V_{IS} = GND, I_{S} =1mA		30		Ω
ON Decistance (De	-:I\		V_{CC} =3.0V~3.6V, V_{IS} = V_{CC} , I_{S} =10mA		18	50	Ω
ON-Resistance (Rail)		R _{ON(RAIL)}	V _{CC} =3.0V~3.6V, V _{IS} = GND, I _S =10mA		20	50	Ω
			V _{CC} =4.5V~5.5V, V _{IS} = V _{CC} , I _S =10mA		13	22	Ω
			V _{CC} =4.5V~5.5V, V _{IS} = GND, I _S =10mA		15	22	Ω
Quiescent Supply Current		1	V_{CC} =5.5V, V_E = V_{CC} or GND, V_{IS} = GND or			1.0	
		IQ	V _{CC} , V _{OS} =V _{CC} or GND			1.0	μΑ
Enable Input Capa	citance	CE	V _E =V _{CC} or GND		2	10	pF
Maximum Switch C	Capacitance	Cs	Independent I/O		4	10	pF

Note: With supply voltages at or near 2V, the analog switch on-state resistance becomes very nonlinear. Only digital signals should be transmitted at these low supply voltages.

■ DYNAMIC CHARACTERISTICS (Ta=25°C)

Input: t_R, t_F≤3ns; PRR≤1MHz, All typical values are measured at V_{CC}=2V; V_{CC}=3.3V or V_{CC}=5V.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay From Y/Z TO Z/Y	t _{PHL} /t _{PLH}	V _{CC} =2.0V, C _L =50pF		2.2	5	ns
Turn On Time From F TO 7/V		V _{CC} =2.0V, C _L =15pF		7	25	ns
Turn-On Time From E TO Z/Y	t _{PZH} /t _{PZL}	V _{CC} =2.0V, C _L =50pF		11	35	ns
Turn Off Time From F TO 7/V	4 /4	V _{CC} =2.0V, C _L =15pF		9	25	ns
Turn-Off Time From E TO Z/Y	t _{PHZ} /t _{PLZ}	V _{CC} =2.0V, C _L =50pF		13	35	ns
Propagation Delay From Y/Z TO Z/Y	t _{PHL} /t _{PLH}	V _{CC} =3.0V~3.6V, C _L =50pF		1	2	ns
T 0. Time From F TO 704	t _{PZH} /t _{PZL}	V _{CC} =3.0V~3.6V, C _L =15pF		4	11	ns
Turn-On Time From E TO Z/Y		V _{CC} =3.0V~3.6V, C _L =50pF		5.8	15	ns
Turn-Off Time From E TO Z/Y	t _{PHZ} /t _{PLZ}	V _{CC} =3.0V~3.6V, C _L =15pF		6	11	ns
Turn-Oil Time From E 10 2/1		V _{CC} =3.0V~3.6V, C _L =50pF		8.4	15	ns
Propagation Delay From Y/Z TO Z/Y	t _{PHL} /t _{PLH}	V _{CC} =4.5V~5.5V, C _L =50pF		0.6	1	ns
Turn On From F TO 704	t _{PZH} /t _{PZL}	V _{CC} =4.5V~5.5V, C _L =15pF		3	8	ns
Turn-On From E TO Z/Y		V _{CC} =4.5V~5.5V, C _L =50pF		4.4	11	ns
Turn-Off Time From E TO Z/Y	t _{PHZ} /t _{PLZ}	V _{CC} =4.5V~5.5V, C _L =15pF		5	8	ns
		V _{CC} =4.5V~5.5V, C _L =50pF		6.1	11	ns

Recommended conditions and typical values. GND=0; t_R=t_F=3ns

Recommended conditions and typical	values. GIVD-	0, tR-tF-0113				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Sine-Wave Distortion at f=1kHz		V_{CC} =3.0V~3.6V, $V_{IS(P-P)}$ =2.5V, R_L =10k Ω , C_L =50pF		0.025		%
		V_{CC} =4.5V~5.5V, $V_{IS(P-P)}$ =4.0V, R_L =10k Ω , C_L =50pF		0.015		%
Sine-Wave Distortion at f=10kHz		V_{CC} =3.0V~3.6V, $V_{IS(P-P)}$ =2.5V, R_L =10k Ω , C_L =50pF		0.025		%
		V_{CC} =4.5V~5.5V, $V_{IS(P-P)}$ =4.0V, R_L =10k Ω , C_L =50pF		0.015		%
Switch OFF Signal Feed-Through		V_{CC} =3.0V~3.6V, R_L =600 Ω , C_L =50pF, F=1MHz		-50		dB
(Note 1)		V_{CC} =4.5V~5.5V, R_L =600 Ω , C_L =50pF, F=1MHz		-50		dB
Minimum Frequency Response		V _{CC} =3.0V~3.6V, R _L =50Ω, C _L =10pF		230		MHz
(-3dB) (Note 2)	f _{MAX}	V _{CC} =4.5V~5.5V, R _L =50Ω, C _L =10pF		280		MHz
OPERATING CHARACTERISTICS				•		
Power Dissipation Capacitance	Cpd	C _L =50pF, f=10MHz, V _{CC} =5		13		pF

Notes: 1. Adjust input voltage V_{IS} is 0dbm level (0dbm=1mW into $600\Omega)$

^{2.} Adjust input voltage V_{IS} is 0dbm level at V_{OS} for 1MHz (0dbm=1mW into 50 $\!\Omega$)

U74AHC1G66

■ TEST CIRCUIT AND WAVEFORMS

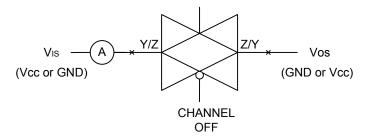


Fig-1 OFF-State Switch Leakage Current Test Circuit

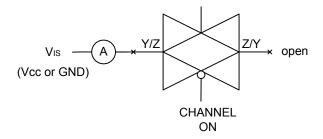


Fig-2 ON-State Leakage Current Test Circuit

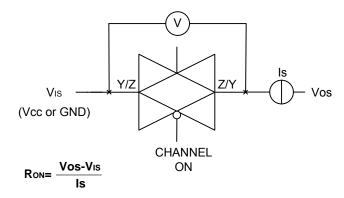


Fig-3 ON-State Resistance Test Circuit

U74AHC1G66 cmos ic

■ TEST CIRCUIT AND WAVEFORMS(Cont.)

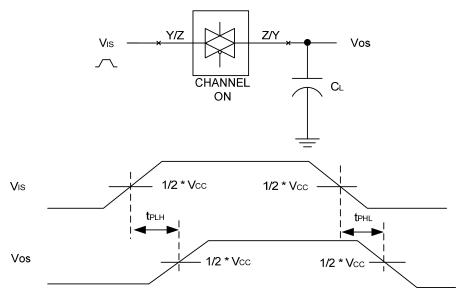
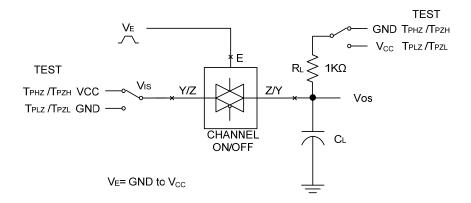



Fig-4 The input (Y/Z) to output (Z/Y) propagation delays.

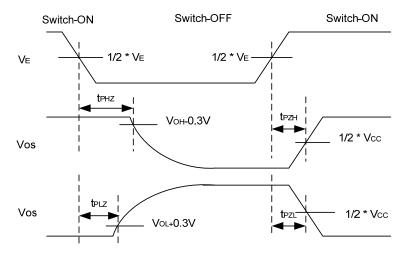


Fig-5 The switch-on and switch-off times.

U74AHC1G66

■ TEST CIRCUIT AND WAVEFORMS(Cont.)

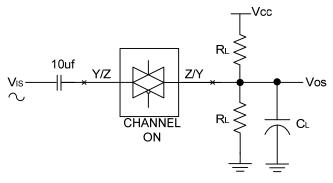


Fig-6 Sine-Wave Distortion

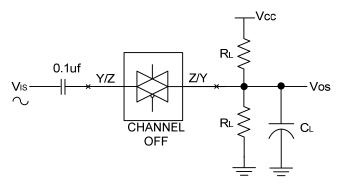


Fig-7 Feed-through Attenuation (Switch OFF)

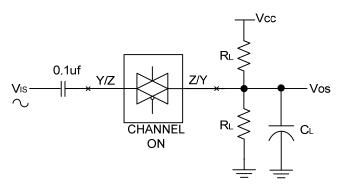


Fig-8 Minimum Frequency Response

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

CMOS IC