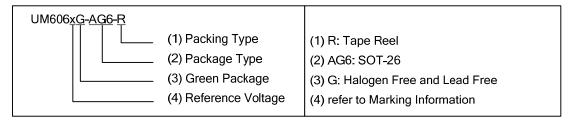

UM606

LINEAR INTEGRATED CIRCUIT

CONSTANT VOLTAGE AND CONSTANT CURRENT CONTROLLER

DESCRIPTION

The UTC **UM606** for a constant voltage/constant current mode SMPS (switch mode power supplies) application which is a highly integrated solution, it contains one 1.21V voltage reference with $\pm 1\%$ accuracy, one current sensing circuit and two operational amplifiers. The UTC **UM606** is an ideal voltage controller for use in adapters and battery chargers because the voltage reference it's combining with one operational amplifier. And the UTC **UM606** is an ideal current limiter for output low side current sensing because the other low voltage reference is combining with the other operational amplifier.

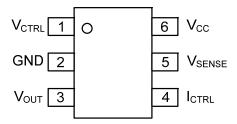


■ FEATURES

- *Constant Voltage and Constant Current Control
- *Precision Internal Voltage Reference
- *Few External Components
- *Easy Compensation

■ ORDERING INFORMATION

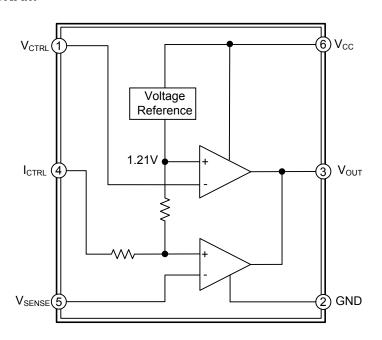
Ordering Number	Package	Packing
UM606xG-AG6-R	SOT-26	Tape Reel



■ MARKING

PACKAGE	CODE	MARKING
SOT-26 (For UM606)	-	6 5 4 日 日 日 UME6G 。 日 日 日 1 2 3
SOT-26 (For UM606x)	D	6 5 4 ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐

www.unisonic.com.tw 1 of 8


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	FUNCTION
1	V_{CTRL}	Input pin of the voltage control loop
2	GND	Ground
3	V_{OUT}	Output pin. sinking current only
4	I _{CTRL}	Input pin of the current control loop
5	V_{SENSE}	Input pin of the current control loop
6	V _{CC}	Power supply

■ BLOCK DIAGRAM

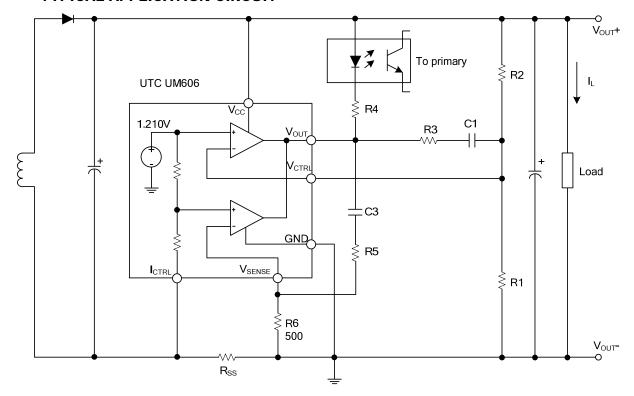
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	RATINGS	UNIT
DC Supply Voltage	V_{CC}	20	V
Input Voltage	V_{IN}	-0.3 ~ V _{CC}	V
Junction Temperature	T_J	+150	°C
Operating Temperature	T_OPR	-40~+105	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	250	°C/W
Junction to Case	θ_{JC}	92	°C/W

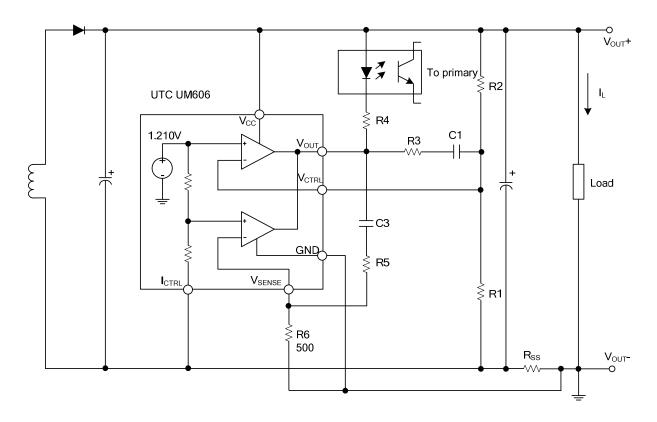

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{CC}	2.5 ~ 18	V

■ ELECTRICAL CHARACTERISTICS (V_{CC}=5V, T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Reference Voltage	V_{REF}		UM606	1.198	1.21	1.222	V
			UM606D	1.186	1.21	1.234	
Current Control Loop Reference	V _{SENSE}	I _{OUT} =2.5mA	UM606	196	200	204	mV
			UM606D	66.5	70	73.5	
Low Output Voltage	V _{OL}	@10mA Sinking Current	UM606		200		mV
			UM606D		100		
Total Supply Current	Icc	V _{CC} =5V	UM606		0.6	1.2	mA
			UM606D		0.5	1.0	
Input Bias Current	I _{IB}				50		nA
Current Out of Pin I _{CTRL}	I _{IBI}	@-200mV	UM606		25		
			UM606D		18		μA
Output Short Circuit Current.	Ios	Output to V _{CC} . Sink Current Only			27	50	mA
Transconduction Gain (V _{CTRL})	Gmv	Sink Current Only		1	3.5		mA/mV
Transconduction Gain (I _{CTRL}).	Gmi			1.5	7		mA/mV

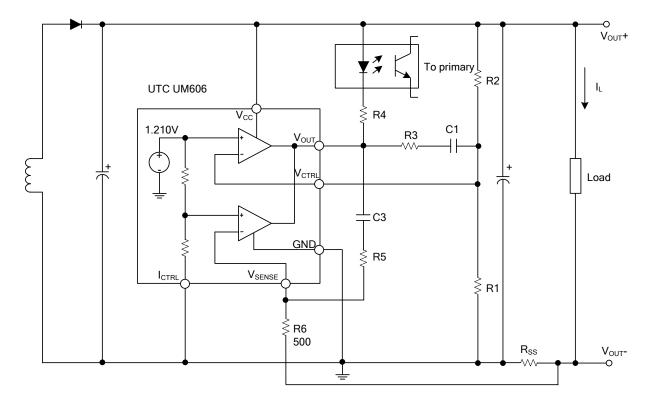
■ TYPICAL APPLICATION CIRCUIT



$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R1} \quad (V)$$

$$Current \ Limit = \frac{V_{\text{SENSE}}}{R_{\text{SS}}} \quad \text{(A)}$$

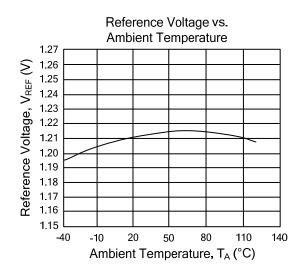
Figure 1. Typical Application 1 of UTC UM606

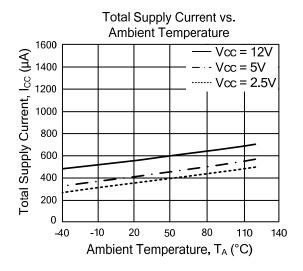

■ TYPICAL APPLICATION CIRCUIT(Cont.)

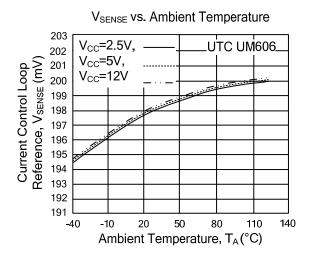
$$\begin{split} V_{OUT} = & \left[V_{REF} + \left(I_L \times R_{SS} \right) \right] \times \frac{R1 + R2}{R1} - \left(I_L \times R_{SS} \right) \ \, (V) \end{split}$$
 Current Limit =
$$\frac{V_{SENSE}}{R_{SS}} \ \, (A)$$

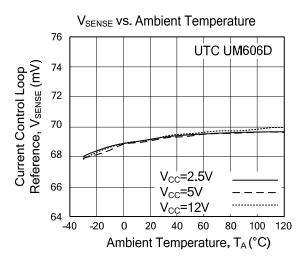
Figure 2. Typical Application 2 of UTC UM606

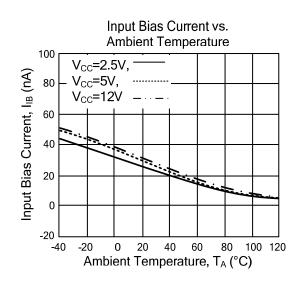
■ TYPICAL APPLICATION CIRCUIT(Cont.)

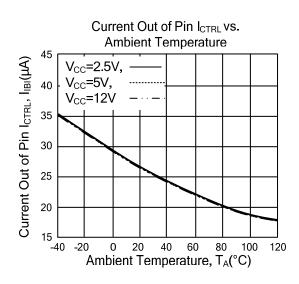


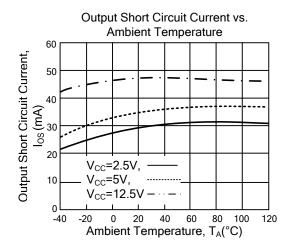

$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R1} - (I_L \times R_{SS}) \quad (V)$$


$$Current \ Limit = \frac{V_{SENSE} \times V_{REF}}{\left(V_{SENSE} + V_{REF}\right) \times R_{SS}} \quad \text{(A)}$$


Figure 3. Typical Application 3 of UTC UM606


■ TYPICAL PERFORMANCE CHARACTERISTICS





■ TYPICAL PERFORMANCE CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.