2-W STEREO AUDIO POWER AMPLIFIER WITH ADVANCED DC VOLUME CONTROL

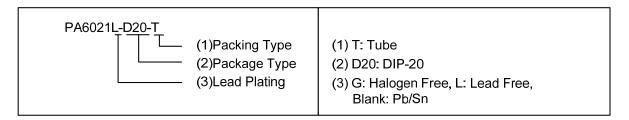
DESCRIPTION

The **PA6021** is a stereo audio power amplifier that drives 2 W/channel of continuous RMS power into a 4- Ω load when utilizing a heat sink. Advanced dc volume control minimizes external components and allows BTL (speaker) volume control and SE (headphone) volume control.

The 20-pin DIP package allows for the use of a heatsink which provides higher output power.

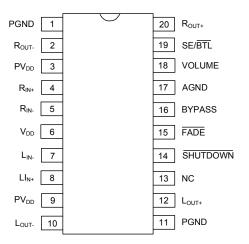
To ensure a smooth transition between active and shutdown modes, a fade mode ramps the volume up and down.

DIP-20


Lead-free: PA6021L Halogen-free: PA6021G

■ FEATURES

- * 2 W Into 4-W speakers with external heatsink
- * DC volume control with 2-dB Steps from -40 dB ~ 20 dB
- Fade Mode
- -85-dB Mute Mode
- * Differential Inputs
- * 1-µA Shutdown Current (Typical)
- * Headphone Mode


■ ORDERING INFORMATION

Ordering Number			Dookogo	Dooking	
Normal	Lead Free Plating	Halogen Free	Package	Packing	
PA6021-D20-T	PA6021L-D20-T	PA6021G-D20-T	DIP-20	Tube	

www.unisonic.com.tw 1 of 6

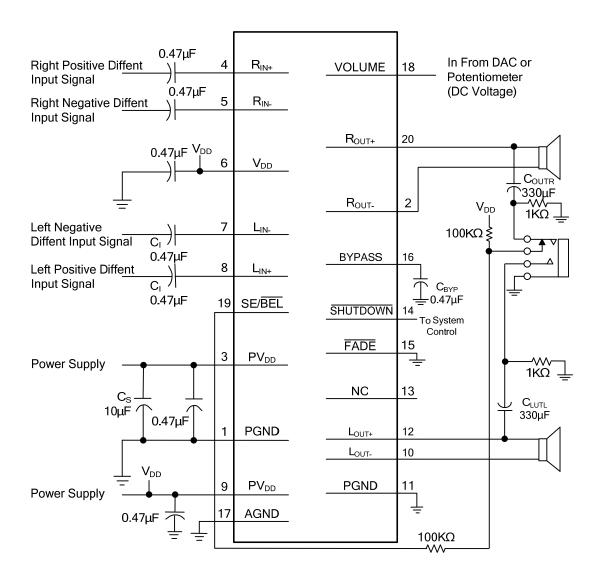
■ PIN CONFIGURATION

■ PIN DESCRIPTION

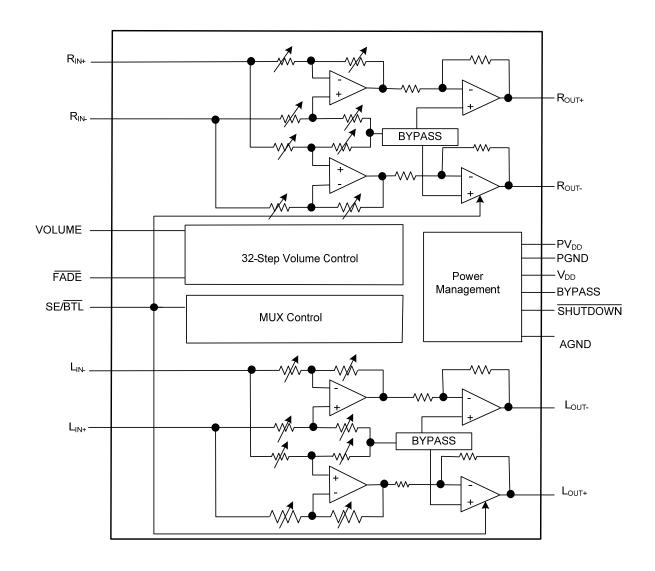
PIN#	PIN NAME	I/O	DESCRIPTION
16	BYPASS	I	Tap to voltage divider for internal midsupply bias generator used for analog reference
15	FADE	I	Places the amplifier in fade mode if a logic low is placed on this terminal; normal operation if logic high is placed on this terminal.
17	AGND		Analog power supply ground
7	L _{IN-}	I	Left channel negative input for fully differential input.
8	L _{IN+}	I	Left channel positive input for fully differential input.
10	L _{OUT} -	0	Left channel negative audio output
12	L _{OUT+}	0	Left channel positive audio output.
13	NC		No connection
1,11	PGND		Power ground
3,9	PV_{DD}		Supply voltage terminal for power stage
5	R _{IN-}	I	Right channel negative input for fully differential input.
4	R _{IN+}	I	Right channel positive input for fully differential input.
2	R _{OUT} .	0	Right channel negative audio output
20	R _{OUT+}	0	Right channel positive audio output
19	SE/BTL	I	Output control. When this terminal is high, SE outputs are selected. When this terminal is low, BTL outputs are selected.
14	SHUTDOW	I	Places the amplifier in shutdown mode if a TTL logic low is placed on this terminal
6	V_{DD}		Supply voltage terminal
18	VOLUME	Ī	Terminal for dc volume control. DC voltage range is 0 to V _{DD} .

■ ABSOLUTE MAXIMUM RATING

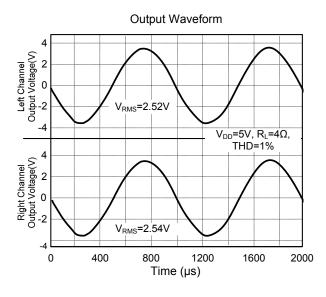
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage, V _{DD} , PV _{DD}	V_{SS}	-0.3V ~ 6V	V
Input Voltage, R _{IN+} , R _{IN-} , L _{IN+} ,L _{IN-}	V_{IN}	-0.3V ~ V _{DD} +0.3V	V
Junction Temperature	T_J	-40°C ~ 150°C	$^{\circ}\mathbb{C}$
Operating Temperature	T _{OPR}	-40°C ~ 85°C	$^{\circ}\mathbb{C}$
Storage Temperature Range	T _{STG}	-65°C ~ 85°C	$^{\circ}\!\mathbb{C}$

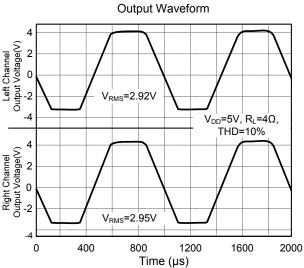

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

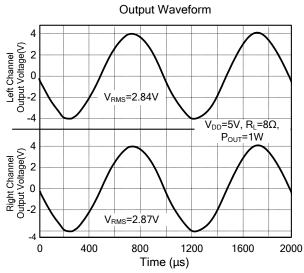
■ **ELECTRICAL CHARACTERISTICS** (T_a=25°C, unless otherwise specified)


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNIT	
DC CHARACTERISTICS (VDD=PVDD	=5.5V)							
Supply Voltage, V _{DD} , PV _{DD}	V_{DD}			4		5.5	V	
DC Differential Output Voltage	V _{OUT(DIFF)}	Gain=0dB, SE/BTL=0V				30	mV	
		Gain=20dB, SE/BTL=0V				50		
High-level Input Voltage		SE/BTL, FADE		$0.8xV_{DD}$			V	
	V _{IH}	SHUTDOWN		2			V	
		SE/BTL, FADE				$0.6xV_{DD}$	V	
Low-level Input Voltage	VIL	SHUTDOWN				0.8	V	
High-level Input Current (SE/BTL,						4		
FADE, SHUTDOWN, VOLUME	I _{IH}	$V_{IN}=V_{DD}=PV_{DD}$				1	μA	
Low-level Input Current (SE/BTL,		V _{IN} =0V				1	μA	
FADE, SHUTDOWN, VOLUME	'1	", "				'	μπ	
Supply Current, No Load	I _{DD}	SE/BTL=0V, SHUTDOWN=2\		6.0	7.5	9.0	mA	
,		SE/BTL=5.5V, SHUTDOWN=	2V	3.0	5 6			
Supply Current, Shutdown Mode	I _{DD(SD)}	SHUTDOWN =0V			1	20	μΑ	
AC CHARACTERISTICS(V _{DD} =PV _{DD}	=5V, R _L =4Ω,	Gain=20dB)						
Bypass Voltage (Nominally V _{DD} /2)	$V_{(Bypass)}$	Measured at pin 16, No load,		2.65 2.75		2.85	V	
bypass voltage (Norminally VDD/2)		V _{DD} =5.5V		2.03	2.75	2.00	v	
 High-Level Output Voltage	V _{OH}	R_L =8 Ω , Measured between out	put			700	mV	
I light-Level Output Voltage		and V _{DD} =5.5V				700	111.0	
Low-Level Output Voltage	V _{OL}	R_L =8 Ω , Measured between output				400	mV	
		and GND, V _{DD} =5.5V				700		
Output Power	P _{OUT}	THD=1%, f=1kHz			1.5		W	
Cutput i owei		THD=10%, f=1kHz			2			
Total Harmonic Distortion + Noise	THD+N	P_{OUT} =1W, R_L =8 Ω , f=20Hz~20kHz			<0.8%			
Power Supply Rejection Ratio	PSRR	V_{DD} =P V_{DD} =4 V ~5.5 V		-42	-70		dB	
Input Impedance	Zı	VOLUME=5V			14		kΩ	
	RR	f=1kHz, Gain=0dB,	BTL		-82		dB	
Supply Ripple Rejection Ratio		C _(BYP) =0.47µF	SE		-57		dB	
Noise Output Voltage		f=20Hz~20kHz, Gain=0dB,	DTI	L	20		/	
		C _(BYP) =0.47µF	BTL		36		μV_{RMS}	
Supply Current, Max Power Into a		SHUTDOWN=2V, R _L =4Ω,			1.3		^	
4-Ω Load	I _{DD}	SE/BTL=0V, P _{OUT} =2W			1.3		A _{RMS}	

PA6021


■ TYPICAL APPLICATION CIRCUIT




■ BLOCK DIAGRAM

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.