

UNISONIC TECHNOLOGIES CO., LTD

US251 Preliminary CMOS IC

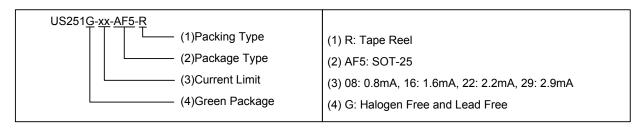
CURRENT-LIMITED, POWER-DISTRIBUTION **SWITCHES**

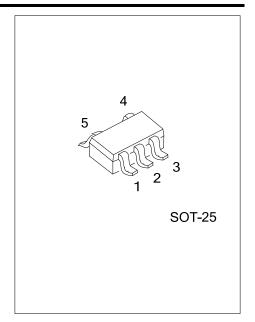
DESCRIPTION

The UTC US251 is a power distribution switch. It is intended for applications such as USB where heavy capacitive loads and short-circuits are likely to be encountered. This family offers multiple devices with fixed current-limit thresholds for applications between 0.5A and 2A.

The $R_{DS(ON)}$ of the MOSFET switch is as low as $80m\Omega$. \overline{OC} is open-drain output report over-current or over-temperature event which has deglitch typical 9ms timeout period typically 9ms.

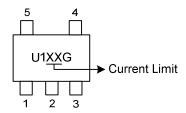
The UTC US251 incorporates protection circuits including current limiting circuit with foldback function, thermal shutdown circuit designed to prevent catastrophic switch failure due to increasing power dissipation when continuous heavy loads or short circuit occurs. Besides, a built-in charge pump is used to drive the N-channel MOSFET that is free of parasitic body diode to eliminate any reversed current flow across the switch when it is powered off.

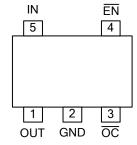

The UTC US251 is applied in high-side power protection switch, USB power management, USB host and self-powered bubs, USB bus-powered hubs, hot plug-in power supplies, battery-charger circuits.



- * Single Power Switch Family
- * 80-mΩ High-Side MOSFET
- * Rated currents of 0.5 A, 1 A, 1.5 A, 2 A
- * Accurate, Fixed, Constant Current Limit
- * Deglitched Fault Reporting
- * Output Discharge When Disabled
- * Reverse Current Blocking
- * Built-in Softstart

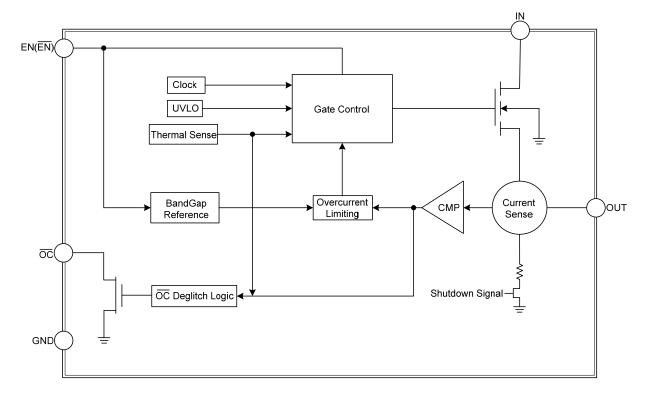
ORDERING INFORMATION


Ordering Number	Package	Packing
US251G-xx-AF5-R	SOT-25	Tape Reel



www.unisonic.com.tw 1 of 5

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT	Output MOSFET Source of switch.
2	GND	Ground
3	<u>oc</u>	Open-Drain OC output.
4	EN or EN	Enable input. Make sure EN pin never floating.
5	IN	Power Input Voltage

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

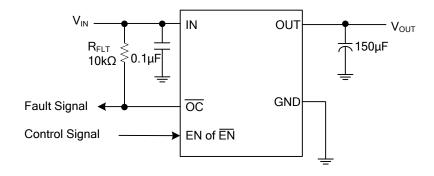
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	-0.3 ~ 6	V
Enable Input Voltage	V_{EN}	-0.3 ~ 6	V
Flag Voltage	V_{EN}	-0.3 ~ 6	V
Output Voltage	V _{OUT}	-0.3 ~ 6	V
Output Current	I _{OUT}	Internally Limited	Α
Junction Temperature	T_J	150	°C
Storage Temperature	T _{STG}	-65~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	250	°C/W

■ RECOMMENDED OPERATING CONDITIONS


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage, IN	V_{IN}		3.5		5.5	V
Input Voltage, EN or EN	V_{EN}		0		5.5	٧
Operating Junction Temperature	T_J		-40		125	°C
Sink Current Into FLT	I _—		0		5	mA

■ ELECTRICAL CHARACTERISTICS

(V_{IN} =5V, C_{IN} = C_{OUT} =1 μ F, T_A =25°C, unless otherwise specified)

$(V_{IN}=5V, C_{IN}=C_{OUT}=1\mu F,$	1 _A =25°C,			2110				
	PARAMETER SYMBOL TEST CONDITIONS		JNS	MIN	TYP	MAX	UNIT	
ENABLE INPUT	1.		I	_	I	1		
CTL Threshold H	Low	V _{IL}	V_{IN} =3.5V~5.5V, Switch OF				0.8	V
	High	V _{IH}	V _{IN} =3.5V~5.5V, Switch ON		2.0			V
CTL Input Current		I _{I(CTL)}	V _{CTL} =0V~5.5V			0.01		μA
UNDER VOLTAGE LOCK	(I		l		l	
Under-Voltage Lockout		V _{UVLO}	V _{IN} increasing			2.8		V
Under-Voltage Hysteresis		ΔV_{UVLO}	V _{IN} decreasing			0.1		V
SUPPLY CURRENT			1		i			
Supply Current		I _{SW(ON)}	Switch on, V _{OUT} =OPEN			55	70	μA
		I _{SW(OFF)}	Switch off, V _{OUT} =OPEN			0.1	1	μA
Output Leakage Current		I _{O(LEAK)}	V_{CTL} =0V, R_{LOAD} =0 Ω			0.5	10	μA
Davis and Landau Co. 1			V _{OUT} =5V, V _{IN} =0V, measure			0.1	1	μA
Reverse Leakage Current		I _{REV}	-40°C≤ (T _J , T _A)≤85°C, V _{OU}	$_{\Gamma}$ =5V, V_{IN} =0V,			5	μA
OUDDENT LINET			measure I _{VOUT}			<u> </u>		'
CURRENT LIMIT				110054.00	0.0	0.0	4.4	^
				US251-08	0.6	0.8	1.1	A
Current Limit		I_{LIMIT}		US251-16	1.2	1.6	1.9	A
				US251-22	1.6	2.2	2.7	A
				US251-29	2.3	2.9	3.6	A
			\/ =0\/ mcas:::ad n=i=:	US251-08		1		A
Short Circuit Fold-Back Current	ırrent	I _{SC(FB)}	V _{OUT} =0V, measured prior to thermal shutdown	US251-16		1		A
			to thermal shutdown	US251-22		1		A
DOWED SWITCH				US251-29]	Α
POWER SWITCH			I _{OUT} =0.5A	US251-08		80	110	mΩ
			I _{OUT} =0.5A	US251-06 US251-16		80	110	mΩ
Switch ON Resistance		$R_{DS(ON)}$	I _{OUT} =1.5A	US251-16 US251-22		80	110	mΩ
			I _{OUT} =1.5A	US251-22 US251-29		80	110	mΩ
Output Turn-ON Rise Time		t _{ON(RISE)}	100T=2.0A 10% ~ 90% of V _{OUT} rising	103231-28		400	110	μs
OVER CURRENT FLAG	•	*OIN(RISE)	11070 3070 OF VOULTISHING		<u> </u>]	μο
FLAG OFF Current		FLG(OFF)	V _{FLG} =5V			0.01	1	uА
FLAG Output Resistance		RFLG	I _{SINK} =1mA			20	400	Ω
FLAG Delay Time		t _D	From fault condition to FLG assertion			10	.50	ms
		ιD	TOTALIAMIL CONMISSION TO FL	o assertion		10]	1115
THERMAL SHUTDOWN		-	<u> </u>			465	1	00
Thermal Shutdown Protect	tion	T _{SD}				130		°C
Thermal Shutdown Hyster	esis	ΔT_{SD}				20		°C
Output Discharge								1
Output Pull-Down Resistar	nce	R_{PD}	V _{IN} =V _{OUT} =5.0V, disabled			400	800	Ω

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

CMOS IC