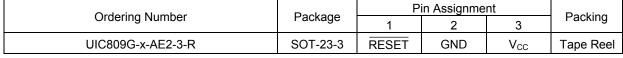
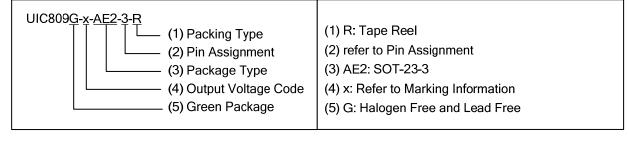
MICROPROCESSOR RESET CIRCUITS

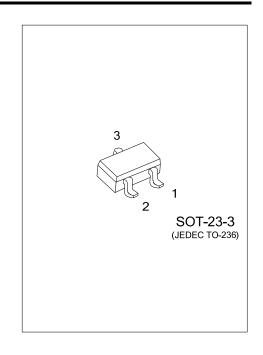
DESCRIPTION

The UTC **UIC809** series are resetting circuits which can monitor power supplies especially in microprocessor based systems.


In normal operation, the UTC **UIC809** series can assert a reset under any of the following situation: the power supply drops below a designated reset threshold level (which is available for 3V or 3.3V or 5V system) is forced low.

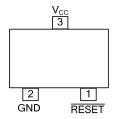
There is an internal active low $\overline{\text{RESET}}$ output which has already been guaranteed to remain asserted for at 140ms least while V_{CC} rises above the designed threshold level.


■ FEATURES


- * Voltage monitor for 3V or 3.3V or 5V power supplies
- * Valid RESET remains with V_{CC} as low as 1V
- * Typical supply current: 5µA
- * Fixed 140ms minimum reset pulse width
- * With Manual reset input

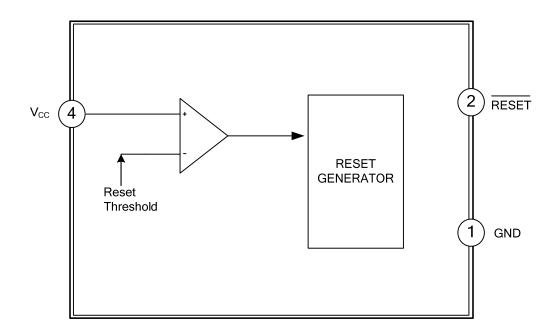
ORDERING INFORMATION

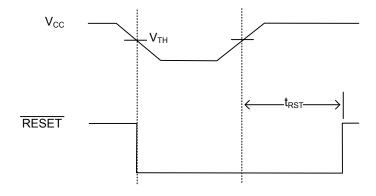
Note: Pin Assignment: x: Output Voltage, refer to Marking Information.



■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING				
SOT-23-3	B : 2.93V	Voltage Code UX□G Pin Code 2 1				


■ PIN CONFIGURATION


■ PIN DESCRIPTION

No.	PIN NAME	DESCRIPTION
1		This pin will fall low after the V_{CC} 's falling below the reset threshold voltage and it also cal remain asserted for at least 140ms min after V_{CC} 's rising upon the reset threshold.
2	GND	Ground
3	V_{CC}	Input of power supply.

■ BLOCK DIAGRAM

■ FUNCTIONAL DIAGRAM

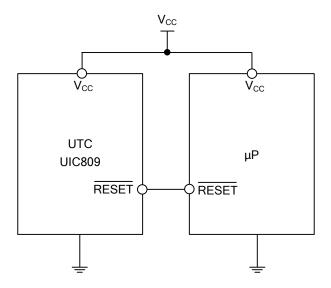
Reset Timing Diagram

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	Vcc	-0.3~+6.0	V
Input Current (V _{CC})	I _{IN}	20	mA
Output Current (RESET)	I _{OUT}	20	mA
Rate of Rise	V _{CC(RR)}	100	V/µs
Power Dissipation (T _A =+70°C)	P _D	300	mW
Operating Temperature	T _{OPR}	-40~+125	°C
Storage Temperature	T _{STG}	-65~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS

UIC809-B (2.93V) (V_{CC} =3.3V, T_A = 25°C, unless otherwise specified)

	•	/				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage Range	V_{CC}	T _A =-40~+85°C	1		6	V
Supply Current	Icc	V _{CC} =3.3V, no load		5	10	μΑ
Reset Voltage Threshold	V_{TH}		2.85	2.93	3.00	V
Reset Timeout Period	t _{RST}		140	240	560	ms
	V _{OH}	I _{SOURCE} =500μA	2.64			V
Reset Output Voltage		V _{CC} = V _{TH} min, I _{SINK} =1.2mA			0.3	V
		V _{CC} >1V, I _{SINK} =50µA, T _A =-40~+85°C			0.3	V

^{2.} The device is not guaranteed to function outside its operating rating.

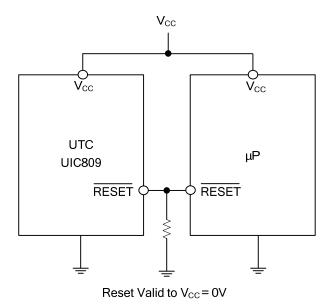
■ TYPICAL APPLICATION CIRCUIT

■ APPLICATION INFORMATION

Microprocessor Reset

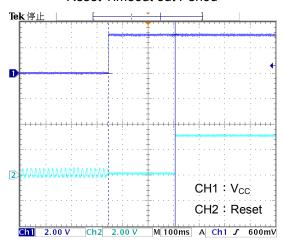
As soon as V_{CC} falls below the reset threshold voltage, the \overline{RESET} pin is asserted. But the \overline{RESET} pin can keep asserted for a period of 140ms after V_{CC} rose above the reset threshold voltage. After a power failure the reset operation can keep the processor being reset and powers up properly.

V_{CC} Transients


The UTC **UIC809** series won't cause a reset typically as this situation: a negative-going transient 125mV below the reset threshold with a duration of 20µs or less.

Interfacing to Bidirectional Reset Pins

Connecting a $4.7k\Omega$ resistor in series with the UTC **UIC809** series output and the μP reset pin can make the UTC **UIC809** series interface with μPs with bidirectional reset pins.


RESET Valid at Low Voltage

As the figure below, adding a resistor which is recommended $100k\Omega$ can ensure the $\overline{\text{RESET}}$ output remains low with V_{CC} down to 0V. The size of the resistor should be not too large which will load the output excessively and not too small which can pull-down any stray leakage currents.

■ TYPICAL CHARACTERISTICS

Reset Timeout out Period

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.