

UNISONIC TECHNOLOGIES CO., LTD

UCL2300

Preliminary

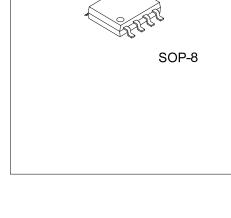
LINEAR INTEGRATED CIRCUIT

PSR SINGLE-STAGE APFC OFFLINE LED DRIVER

DESCRIPTION

The UTC **UCL2300** is a high precision primary-side regulation controller with single stage Active PFC, specially designed for universal input offline flyback or buck-boost constant current LED lighting. The controller with on-chip PFC circuit achieves high power factor and low THD. Operating in critical conduction mode, the power MOSFET switching loss is reduced and the inductor is fully utilized.

The UTC **UCL2300** adopts proprietary primary side current sensing scheme. It can precisely control the LED current without secondary side sense and feedback circuits. The system size and cost are optimized, as well as the system reliability.

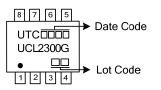

The UTC **UCL2300** utilizes patented line and load voltage compensation method to achieve excellent line and load regulation. And the line compensation factor can also be tuned externally for flexibility.

The UTC **UCL2300** offers rich protection functions to improve the system reliability, including LED open circuit protection, LED short circuit protection, V_{CC} over voltage protection, V_{CC} under voltage protection, CS resistor open protection and cycle by cycle current limit. All the protection functions are auto-recovery.

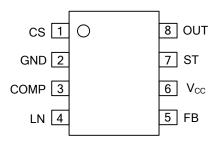
FEATURES

- * Single-stage active PFC for high power factor and low THD
- * Primary side control constant current operation, No opto-coupler required
- * Ultrafast LED start (<200ms @85V)
- * ±3% LED current accuracy
- * Excellent line and load regulation
- * Critical conduction mode operation
- * Source driving method
- * Ultra-low (20µA) startup current

ORDERING INFORMATION

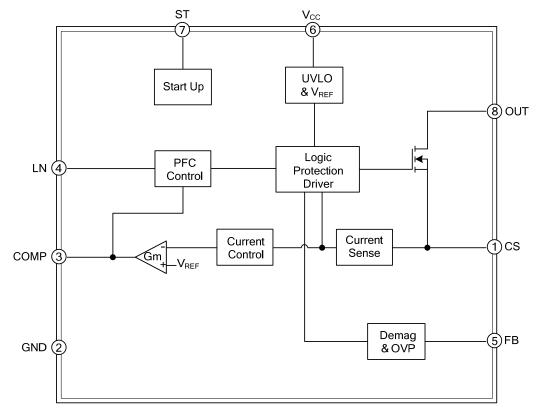

- * Ultra-low (300µA) Operating current
- * High resistance feedback resistor for improved efficiency
- * LED open and short circuit protection
- * CS resistor open and short circuit protection
- * Transformer saturation protection
- * Cycle-by-cycle current limit
- * V_{CC} over-voltage and under-voltage protection
- * Auto fault recovery

Ordering Number	Package	Packing
UCL2300G-S08-R	SOP-8	Tape Reel


UCL2300G-S08-R	(1) R: Tape Reel
(2)Package Type	(2) S08: SOP-8
(3)Green Package	(3) G: Halogen Free and Lead Free

UCL2300

MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	CS	Current sense pin. Connect a resistor to GND to sense the power MOSFET current.
2	GND	Ground.
3	COMP	Loop compensation node.
4	LN	Line voltage sample input.
5	FB	Feedback voltage input Pin.
6	Vcc	Power supply pin.
7	ST	Chip enable pin.
8	OUT	Pulse out pin. Connected to the 'Source' of external power MOSFET.

BLOCK DIAGRAM

Preliminary

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
V _{cc} Pin Input Voltage	V _{CC}	-0.3~22	V
Current Sense Pin Input Voltage	CS	-0.3~6	V
Compensation Pin Voltage	COMP	-0.3~6	V
Line Voltage Sample Input	LN	-0.3~6	V
Feedback Pin Input Voltage	FB	-0.3~6	V
ST Pin Maximum Supply Current	I _{ST MAX}	5	mA
External Power MOSFET Drive Voltage	OUT	-0.3~18	V
Maximum Work Current of Internal Power MOSFET	I _{OUT}	3	А
Power Dissipation (Note 1)	P _{DMAX}	0.45	W
Junction to Ambient	θ_{JA}	145	°C/W
Junction Temperature	TJ	-40~+150	°C
Storage Temperature	T _{STG}	-55~+150	°C

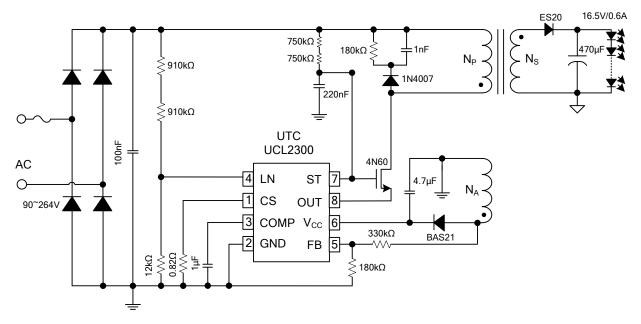
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. The maximum power dissipation decrease if temperature rise, it is decided by T_{JMAX} , θ_{JA} , and environment temperature (T_A). The maximum power dissipation is the lower one between $P_{DMAX}=(T_{JMAX}-T_A)/\theta_{JA}$ and the number listed in the maximum table.

RECOMMENDED OPERATION CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V _{CC}	11.5~17.5	V

■ ELECTRICAL CHARACTERISTICS (Notes 1, 2) (Unless otherwise specified, V_{CC}=14V and T_A=25°C)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Startup Voltage						
V _{ST} Startup Voltage	$V_{\text{ST ON}}$	1mA, V _{CC} =10V	16	17	18	V
V _{ST} Hysteresis Voltage	V _{ST HYS}	V _{CC} =14V		2		V
ST Startup Current	I _{ST ON}	V _{CC} =10V		20	35	μA
ST Operating Current	I _{ST OP}	V _{CC} =14V		35	60	μA
Supply Voltage Section						
V _{CC} Startup Voltage	V _{CC ON}	V _{CC} Rising	10	11	12	V
V _{CC} Undervoltage Protection Threshold	V _{CC_UVLO}	V _{CC} Falling	5.2	5.8	6.5	V
V _{CC} Hold Voltage	V _{CC HOLD}	V _{cc} Falling	7	7.5	8	V
V _{CC} Turn Off Current	I _{CC_UVLO}	V_{CC} Rising, V_{CC} =10V		40	70	μA
V _{CC} Quiescent Current	lq	No Switch, V _{CC} =14V		320	600	μA
V _{CC} Operating Current	Icc	F _{OP} =60kHz		300		μA
V _{CC} Over Voltage Protection Threshold	V _{CC OVP}			21		V
FB Feedback						
FB Falling Edge Threshold Voltage	$V_{FB\ FALL}$	FB Falling		0.4		V
FB Hysteresis Voltage	V_{FB_HYS}	FB Rising		0.6		V
FB Over Voltage Protection Threshold	V_{FB_OVP}			5.5		V
Minimum Off Time	T _{OFF_MIN}			4.0		μs
Maximum Off Time	T_{OFF_MAX}			90		μs
Current Sense Section	_					
Leading Edge Blanking Time for Current Sense	T _{LEB_CS}			350		ns
Switch off Delay Time	T _{DELAY}			180		ns
Loop Compensation	_					
Internal Reference Voltage	V_{REF}		0.294	0.300	0.306	V
COMP Low Clamp Voltage	V _{COMP_LO}			1.5		V
COMP Linear Operating Voltage Range	V _{COMP}		1.5		3.5	V
COMP Protection Threshold	V _{COMP_OVP}			4.5		V
Linear Voltage Sampling						
LN Linear Working Range	V_{LN}		0		2.5	V
Driver Stage						
Internal Tube Driven MOS Resistance	R_{DS_ON}	V _{CC} =14V		1200		mΩ
Notoo: 1. Broduction testing of the obin is perfor						

Notes: 1. Production testing of the chip is performed at 25°C.

2. The maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

