UNISONIC TECHNOLOGIES CO., LTD

USR1051

Preliminary

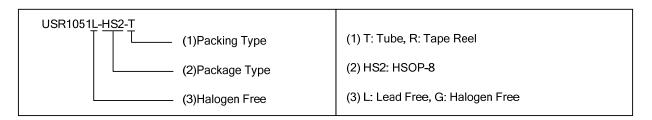
LINEAR INTEGRATED CIRCUIT

3 A SYNCHRONOUS BUCKREGULATOR

DESCRIPTION

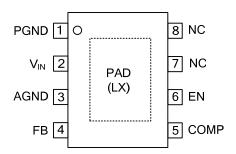
The UTC **USR1051** is a high efficiency, 3A synchronous buck regulator. The UTC **USR1051** works from 5V to 23V input voltage range, and provides up to 3A of continuous output current with an output voltage adjustable down to 0.8V.

The UTC **USR1051** comes in an exposed pad HSOP-8 package and is rated over a -40°C~+85°C operating ambient temperature range.


HSOP-8

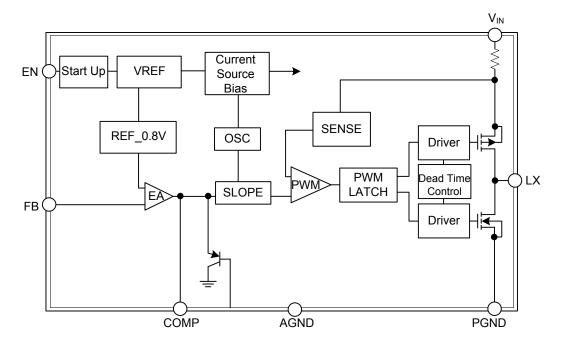
■ FEATURES

- * Synchronous Buck
- * 5V~23V operating input voltage range
- * High efficiency
- * Internal soft start
- * Output voltage adjustable to 0.8V
- * 3A continuous output current
- * Cycle-by-cycle current limit
- * 400kHz PWM operation
- * Pre-bias start-up
- * Thermal shutdown
- * Short-circuit protection
- * Exposed pad HSOP-8 package


■ ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking	
Lead Free	Halogen Free	Package Packing		
USR1051L-SH2-T	USR1051G-SH2-T	HSOP-8	Tube	
USR1051L-SH2-R	USR1051G-SH2-R	HSOP-8	Tape Reel	

<u>www.unisonic.com.tw</u> 1 of 4


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	PGND	Power ground
2	V_{IN}	Supply voltage input
3	AGND	Analog ground
4	FB	Feedback input
5	COMP	External loop compensation pin
6	EN	Enable pin
7	NC	No Connect Pin.
8	NC	No Connect Pin.
Exposed pad	LX	Switching node

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	23	V
LX to AGND		-0.7~V _{IN} +0.3	V
LX to AGND (20ns)		-5~22	V
EN to AGND		-0.3~V _{IN} +0.3	V
FB, SS, COMP to AGND		-0.3~6.0	V
PGND to AGND		-0.3~+0.3	V
Ambient Temperature	T _A	-40~+85	°C
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-65~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

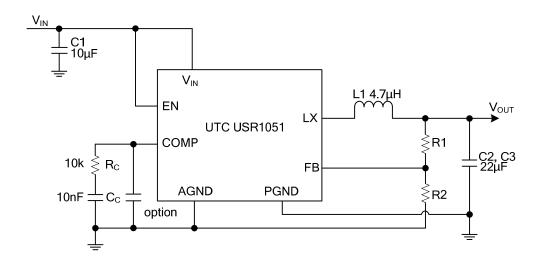
■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient (Note 2)	θ_{JA}	50	°C/W

■ RECOMMENDED OPERATING CONDIIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	5~23	V
Output Voltage	V_{OUT}	0.8~0.85×V _{IN}	V

■ ELECTRICAL CHARACTERISTICS (Note 3)


(T_A=25°C, V_{IN}=V_{EN}=12V, V_{OUT}=3.3V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{IN}		5		23	V
Supply Current (Quiescent)	I _{IN}	I _{OUT} =0, V _{FB} =1.2V, V _{EN} >2V		3.5	5	mA
Shutdown Supply Current	I _{OFF}	V _{EN} =0V		1	10	μΑ
Feedback Voltage	V_{FB}	T _A =25 °C	0.788	0.8	0.812	V
Load Regulation				0.5		%
Line Regulation				1		%
Feedback Voltage Input Current	I _{FB}				200	nA
	V _{EN}	Off Threshold			0.6	V
EN Input Threshold		On Threshold	2			V
SS Time		C _{SS} =16nF		2		ms
MODULATOR						
Frequency	f _O		380	450	550	kHz
Maximum Duty Cycle	D _{MAX}		85			%
Controllable Minimum On Time	T _{MIN}				150	ns
Current Sense Transconductance				7		A/V
Error Amplifier Transconductance				180		μΑ/V
PROTECTION						
Current Limit			3.5	4.5		Α
Over-Temperature Shutdown Limit	_	T _J Rising		150		°C
		T _J Falling		100		°C

Notes: 1. Devices are inherently ESD sensitive, handling precautions are required. Human body model rating: 1.5 $k\Omega$ in series with 100pF.

- 2. The value of θ_{JA} is measured with the device mounted on a 1-in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- 3. Specification in BOLD indicate an ambient temperature range of -40°C~+85°C. These specifications are guaranteed by design.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.