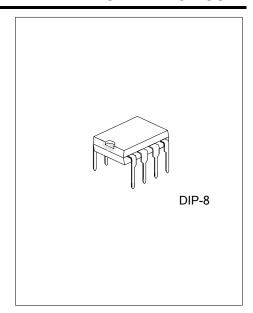
UNISONIC TECHNOLOGIES CO., LTD

US1702

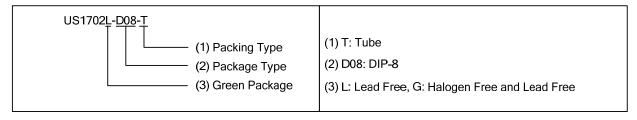

Preliminary

LINEAR INTEGRATED CIRCUIT

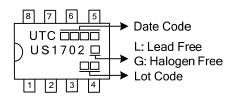
HIGH PERFORMANCE CURRENT MODE POWER SWITCH

■ DESCRIPTION

The UTC **US1702** is an integrated PWM controller and Power MOSFET specifically designed for current mode operation with minimal external components. The UTC **US1702** is designed to provide several special enhancements to satisfy the needs, for example, Power-Saving mode for low standby power (<0.3W), Frequency Hopping, Constant Output Power Limiting, Over Current Protection (OCP), Over Voltage Protection (OVP), Under Voltage Lock Out (UVLO), and Over Temperature Protection (OTP) etc. IC will be shutdown or can auto-restart in certain situations.

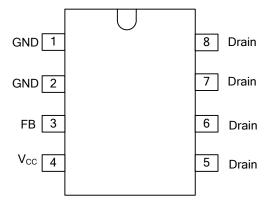


■ FEATURE


- * Internal High Voltage Start-up Circuit
- * Internal 700V Power MOSFET
- * Lower than 0.3W Standby Power Design
- * Gate Output Maximum Voltage Clamp(15V)
- * Over temperature protection
- * Over voltage protection
- * Leading edge blanking
- * Cycle-by-Cycle current limiting
- * Under Voltage Lock Out

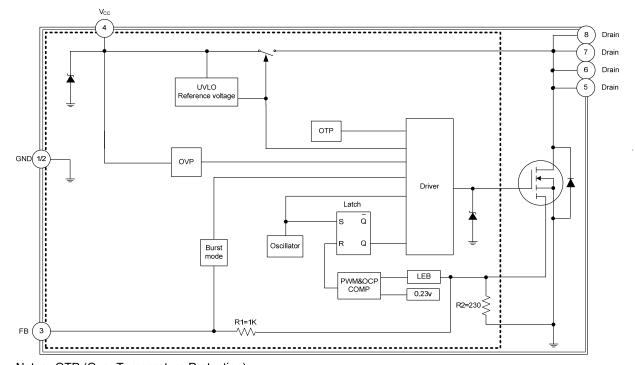
■ ORDERING INFORMATION

	Ordering	Number	Daakaga	Packing	
	Lead Free	Halogen Free	- Package		
Ī	US1702L-D08-T	US1702G-D08-T	DIP-8	Tube	



MARKING

<u>www.unisonic.com.tw</u> 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1、2	GND	Ground
3	FB	Feedback
4	V _{CC}	Supply voltage
5~8	Drain	Power MOSFET drain

■ BLOCK DIAGRAM

Notes: OTP (Over Temperature Protection)

OVP (Over Voltage Protection)

OCP (Over Current Protection)

UVLO (Under Voltage Latch-Out)

LEB (Led Edge Blanking)

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Switching Drain Source Voltage	$V_{DS(SW)}$	700	V
Supply Voltage	V _{cc}	30	V
Feedback Current	I _{FB}	3	mA
Junction Temperature	T_J	+150	°C
Operating Temperature	T_{OPR}	-40 ~ +125	°C
Storage Temperature	T _{STG}	-50 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ OPERATING RANGE

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	8.6 ~ 22	V

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, V_{CC}=15V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
SUPPLY SECTION								
Start Up Charge Current	I _{CH}	V _{DS} =100V, V _{CC} =0~V _{CCON}			1	mA		
Start Up Current	I _{ST}	$V_{CC} = V_{CCON} - 0.2V$		6	45	μA		
Supply Current with switch	I _{OP}	I _{FB} =0.5mA, I _D =50mA		2	6.5	mA		
UNDER-VOLTAGE LOCKOUT SECTION								
Start Threshold Voltage	V_{CCON}		13.5	15	16.5	V		
Min. Operating Voltage	V_{CCOFF}		8	9	10	V		
INTERNAL VOLTAGE REFERENCE				•	•			
CONTROL SECTION								
I _{FB} to I _D Current Gain	G_{FB-D}			560				
Feedback Source Shutdown Current	I _{FBSD}			900		μΑ		
FB Pin Input Impedance	R_FB			1200		Ω		
Burst-Mode Out FB Voltage	$V_{FB(OUT)}$			0.94		٧		
Burst-Mode Enter FB Voltage	$V_{FB(IN)}$			1.05		٧		
Normal initial Switching frequency	F _(SW)		54	60	66	kHz		
Frequency Deviation VS V _{CC}	F_{DV}	V _{CC} =10 to 22V			5	%		
Frequency Deviation VS Temperature	F_{DT}	T _A =-40 to 105°C			5	%		
PROTECTION SECTION								
OVP threshold	V_{OVP}			23		٧		
OTP threshold	$T_{(THR)}$		130	150	170	°C		
CURRENT LIMITING SECTION								
Peak Current Limitation	I_{LIM}	V _{FB} =0V	0.56	0.7	0.84	Α		
Minmum Turn On Time	t _{ON(MIN)}			680		nS		
POWER MOSFET SECTION								
Drain-Source Breakdown Voltage	V_{DSS}	V _{FB} =2V, I _D =250μA	700			V		
Turn-on voltage between gate and source	V_{TH}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2		4	V		
Off State Drain Current	I_{DSS}	V _{DS} =500V, V _{FB} =2V			100	uA		
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V,I _D =0.4A			5	Ω		
Rise Time	t _R	V_{DD} =300V, I_{D} =4.0A RG=25 Ω (Note 1, 2)		45	100	ns		
Fall Time	t _F			35	80	ns		
Drain Capacitance	C_{OSS}	V _{DS} =25V		40		pF		

Notes: 1. Pulse Test: Pulse width≤300µs, Duty cycle≤2%

2. Essentially independent of operating temperature

■ FUNCTIONAL DESCRIPTION

The internal reference voltages and bias circuit work at V_{CC}> V_{THD(ON)}, and shutdown at V_{CC}<V_{CC(MIN)}.

(1) High Voltage Start up switch Circuit

At startup, an internal high-voltage current source supplies the internal bias and charges the external capacitor connected to the V_{CC} pin. When V_{CC} reaches $V_{THD\ (ON)}$, the IC begins switching and the internal high-voltage current source is disabled. The IC continues its normal switching operation and the power is supplied from the auxiliary transformer winding unless V_{CC} goes below the stop voltage of $V_{CC\ (MIN)}$.

(2) Switching Frequency Limit

The UTC US1702 have a constant switching frequency of 60kHz.

(3) Protection section

The IC takes on more protection functions such as OVP and OTP etc. In case of those failure modes for continual blanking time, the driver is shut down. At the same time, IC enters auto-restart, V_{CC} power on and driver is reset after V_{CC} power on again.

OVP

OVP will shutdown the switching of the power MOSFET whenever $V_{CC}>V_{OVP}$. The OVP case as followed Fig. 1 the test circuit as followed Fig. 2.

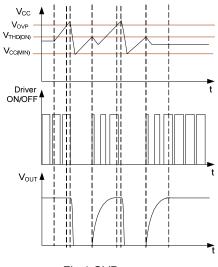


Fig.1 OVP case

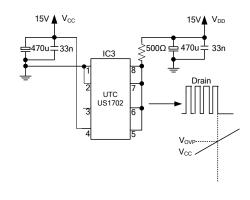


Fig.2 OVP test circuit

OTP

OTP will shut down driver and latch-off when junction temperature $T_J > T_{(THR)}$, and IC will be release on when temperature decreasing under $T_{(THR)}$ -30 and powering on again.

(4) The Gain of FB pin to Drain Current Limiting

 $I_{LIM}=G_{FB-D}\times0.23V\times(R2||R1)$

(5) Driver Output Section

The driver-stage drives the gate of the MOSFET and is optimized to minimize EMI and to provide high circuit efficiency. This is done by reducing the switch on slope when reaching the MOSFET threshold. This is achieved by a slope control of the rising edge at the driver's output. The output driver is clamped by an internal 15V Zener diode in order to protect power MOSFET transistors against undesirable gate over voltage.

(6) Inside Power MOSFET

Specific Power MOSFET parameter is as "Power MOSFET SECTION" in electrical characteristics table.

■ TYPICAL APPLICATION CIRCUIT

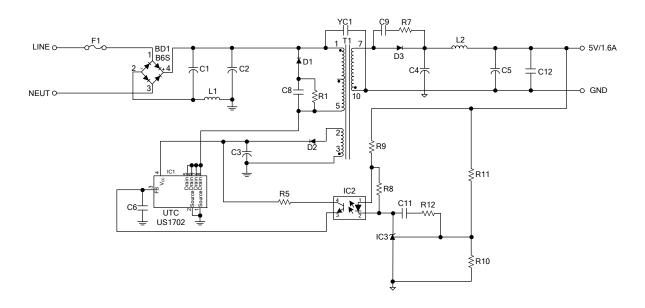


Fig. 3 UTC US1702 Typical Application Circuit

DESIGNATOR	PART TYPE	DESIGNATOR	PART TYPE	DESIGNATOR	PART TYPE
C1	10μF/400V	R1	100ΚΩ	D1	FR107
C2	10μF/400V	R5	6.8ΚΩ	D2	RS1D
C3	10μF/50V	R7	30Ω	D3	SR39
C4	470μF/16V	R8	2.2ΚΩ	IC1	US1702
C5	220µF/16V	R9	510Ω	IC2	PC-817
C6	103pF	R10	5.1ΚΩ	IC3	TL431
C8	102pF/1KV	R11	5.1ΚΩ	YC1	102pF/400V
C9	102pF/100V	R12	15ΚΩ	T1	EE-19
C11	103pF			L1	1mH
C12	103pF			L2	2μH
				F1	1A/250V
				BD1	B6S

Table1. Components reference description for UTC US1702 application circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.