

**UTC** UNISONIC TECHNOLOGIES CO., LTD

UD40301

Preliminary

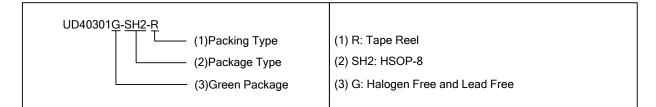
LINEAR INTEGRATED CIRCUIT

# 40V, 3A, 350KHZ SYNCHRONOUS STEP-DOWN **DC/DC CONVERTER**

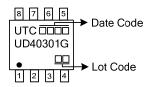
### DESCRIPTION

The UTC UD40301 is a synchronous step-down DC/DC converter that provides wide 4.8V~40V input voltage range and 3A continuous load current capability.

Fault protection includes cycle-by-cycle current limit, input UVLO, output over voltage protection and thermal shutdown. Besides, adjustable soft-start function prevents inrush current at turn-on. This device uses current mode control scheme that provides fast transient response. In shutdown mode, the supply current is less than 1uA.


The UTC UD40301 provides a very compact system solution and good thermal conductance.

#### **FEATURES**

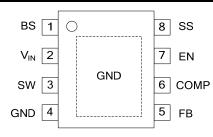

- \* Wide Input Voltage from 4.8V~40V
- \* 3A Output Current
- \* Adjustable Output Voltage from 1V~25V
- \* High Efficiency Up to 93%
- \* Fixed 350KHz Switching Frequency
- \* Current Mode Operation
- \* Adjustable Soft-Start
- \* Cycle-by-Cycle Current Limit
- \* Input Under Voltage Lockout
- \* Over-Temperature Protection

### **ORDERING INFORMATION**


| Ordering Number | Package | Packing   |
|-----------------|---------|-----------|
| UD40301G-SH2-R  | HSOP-8  | Tape Reel |



### MARKING

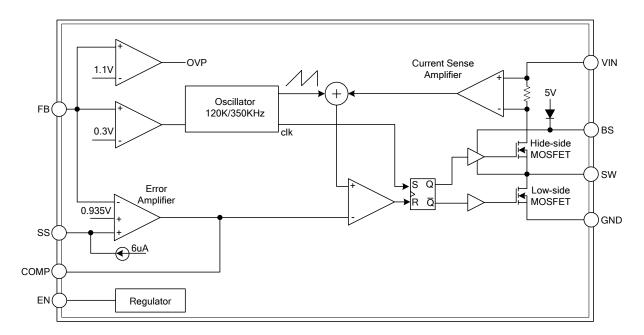



### **PIN CONFIGURATION**



# UD40301

### LINEAR INTEGRATED CIRCUIT




Preliminary

### PIN DESCRIPTION

| PIN NO. | PIN NAME        | DESCRIPTION                                                                                                                                                                         |
|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | BS              | High Side Gate Drive Boost Input. A 10nF or greater capacitor must be connected from this pin to SW. It can boost the gate drive to fully turn on the internal high side NMOS.      |
| 2       | V <sub>IN</sub> | Power Supply Input Pin. Drive 4.5V to 24V voltage to this pin to power on this chip. Connecting a 10uF ceramic bypass capacitor between V <sub>IN</sub> and GND to eliminate noise. |
| 3       | SW              | Power Switching Output. It is the output pin that internal high side NMOS switching to<br>supply power.                                                                             |
| 4       | GND             | Ground Pin. Connecting EP (exposed pad) to Pin 4.                                                                                                                                   |
| 5       | FB              | Voltage Feedback Input Pin. Connecting FB and VOUT with a resistive voltage divider.<br>This IC senses feedback voltage via FB and regulate it at 0.92V.                            |
| 6       | COMP            | Compensation Pin. This pin is used to compensate the regulation control loop. Connect a series RC network from COMP pin to GND.                                                     |
| 7       | EN              | Enable Input Pin. This pin provides a digital control to turn the converter on or off. Connect to $V_{IN}$ with a 100K $\Omega$ resistor for self-startup.                          |
| 8       | SS              | Soft-Start Input Pin. This pin controls the soft-start period. Connect a capacitor from SS to GND to set the soft start period.                                                     |

### BLOCK DIAGRAM





# UD40301

### Preliminary

### LINEAR INTEGRATED CIRCUIT

### ■ ABSOLUTE MAXIMUM RATING (Note 1)

| PARAMETER              | SYMBOL           | RATINGS            | UNIT |  |
|------------------------|------------------|--------------------|------|--|
| Input Supply Voltage   | V <sub>IN</sub>  | -0.3 ~ +41         | V    |  |
| EN Voltage             | V <sub>EN</sub>  | -0.3 ~ +41         | V    |  |
| SW Voltage             | V <sub>SW</sub>  | -0.3 ~ 41          | V    |  |
| Boost Voltage          | V <sub>BS</sub>  | V <sub>SW</sub> +5 | V    |  |
| All Other Pins Voltage |                  | -0.3 ~ +6          | V    |  |
| Junction Temperature   | TJ               | 150                | °C   |  |
| Storage Temperature    | T <sub>STG</sub> | -65 ~ +150         | °C   |  |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

#### ■ **RECOMMENDED OPERATING CONDITIONS** (Note 2)

| PARAMETER            | SYMBOL           | RATINGS   | UNIT |
|----------------------|------------------|-----------|------|
| Input Supply Voltage | V <sub>IN</sub>  | 4.8 ~ 40  | V    |
| Output Voltage       | V <sub>OUT</sub> | 1 ~ 25    | V    |
| Ambient Temperature  | T <sub>A</sub>   | -40 ~ +85 | °C   |

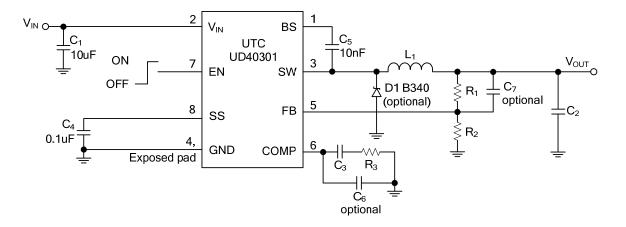
### THERMAL CHARACTERISTICS

| PARAMETER           | SYMBOL          | RATINGS | UNIT |
|---------------------|-----------------|---------|------|
| Junction To Ambient | $\theta_{JA}$   | 105     | °C/W |
| Junction to Case    | θ <sub>JC</sub> | 50      | °C/W |

#### ■ ELECTRICAL CHARACTERISTICS (V<sub>IN</sub>=12V, T<sub>A</sub>=25°C, unless otherwise specified )

| PARAMETER                                     | SYMBOL           | TEST CONDITIONS                                          | MIN  | TYP | MAX  | UNIT |
|-----------------------------------------------|------------------|----------------------------------------------------------|------|-----|------|------|
| V <sub>IN</sub> Input Supply Voltage (Note 3) |                  |                                                          | 4.8  |     | 40   | V    |
| V <sub>IN</sub> Supply Current                |                  | V <sub>EN</sub> =V <sub>IN</sub> , V <sub>FB</sub> =1.0V |      | 1.5 |      | mA   |
| VIN Shutdown Supply Current                   |                  | V <sub>EN</sub> =0V                                      |      | 0.3 | 3    | μA   |
|                                               | $V_{FB}$         | 4.8V≤V <sub>IN</sub> ≤40V                                | 917  | 935 | 953  | mV   |
| Feedback Voltage                              |                  | -40°C≤T <sub>A</sub> ≤85°C                               | 907  |     | 963  | mV   |
| Feedback OVP Threshold Voltage                |                  |                                                          | 1.05 | 1.1 | 1.15 | V    |
| High-Side MOSFET R <sub>DS(ON)</sub> (Note 4) |                  |                                                          |      | 130 |      | mΩ   |
| Low-Side MOSFET R <sub>DS(ON)</sub> (Note 4)  |                  |                                                          |      | 100 |      | mΩ   |
| High-Side MOSFET Leakage Current              |                  | V <sub>EN</sub> =0V, V <sub>SW</sub> =0V                 |      |     | 10   | μA   |
| High-Side MOSFET Current Limit (Note 4)       |                  |                                                          | 3.3  | 4.5 |      | Α    |
| Low-Side MOSFET Current Limit (Note 4)        |                  | From drain tosource                                      |      | 1.5 |      | Α    |
| COMP to Current sense Transconductance        | G <sub>CS</sub>  |                                                          |      | 7   |      | A/V  |
| Error Amplifier Transconductance              | G <sub>EA</sub>  | ΔI <sub>COMP</sub> =±10μA                                |      | 820 |      | μA/V |
| Error Amplifier Voltage Gain                  | A <sub>EA</sub>  |                                                          |      | 400 |      | V/V  |
| Oscillation Frequency                         | Fosc             |                                                          | 280  | 350 | 420  | KHz  |
| Short Circuit Oscillation Frequency           | Fosc             | V <sub>FB</sub> =0V                                      |      | 120 |      | KHz  |
| Maximum Duty Cycle                            | D <sub>MAX</sub> | V <sub>FB</sub> =0.7V                                    | 80   | 90  |      | %    |
| Minimum On Time                               | Ton              |                                                          |      | 180 |      | ns   |
| Input UVLO Threshold                          |                  | V <sub>IN</sub> Rising                                   |      | 4.3 | 4.6  | V    |
| Under Voltage Lockout Threshold               |                  |                                                          |      | 200 |      | mV   |
| Hysteresis                                    |                  |                                                          |      | 200 |      | IIIV |
| Soft-Start Current                            |                  | V <sub>COMP</sub> =0V, V <sub>SS</sub> =0V               |      | 6   |      | μA   |
| Soft-Start Period                             |                  | C <sub>SS</sub> =0.1µF                                   |      | 15  |      | ms   |
| EN Shutdown Threshold Voltage                 |                  |                                                          |      | 1.5 | 2.0  | V    |
| Thermal Shutdown Threshold (Note 4)           |                  |                                                          |      | 160 |      | °C   |

Notes: 1. Stresses exceed those ratings may damage the device.


- 2. If out of its operation conditions, the device is not guaranteed to function.
- 3. When  $V_{IN}$ =4.8V,  $V_{OUT}$ =3.3V, only load 1.2A.

4. Guaranteed by design.



## UD40301

### TYPICAL APPLICATION CIRCUIT



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

