

UNISONIC TECHNOLOGIES CO., LTD

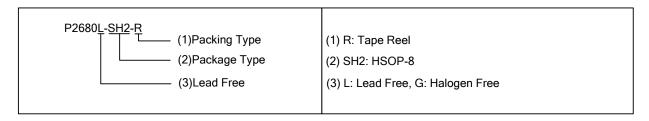
P2680 **Preliminary** CMOS IC

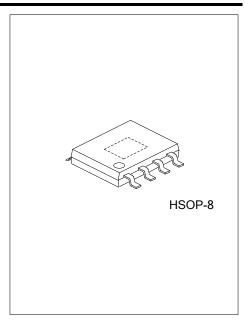
WIDE INPUT 2A SYNCHRONOUS RECTIFIED STEP-DOWN CONVERTER

DESCRIPTION

The UTC P2680 is a monolithic synchronous step-down, fixed 340kHz frequency, current-mode, PWM controller with an internal power MOSFET. It achieves 2A continuous output current over a wide input supply range from 4V to 26V with excellent load and line regulation. Equipped with an external compensation pin, this device offers user flexibility in determining loop dynamic.

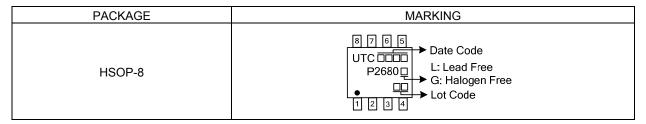
Current mode control provides fast transient response and cycle-by-cycle current limit. A PWM control circuit can provide the duty ratio from 0 up to 90% linearly. An Under-Voltage-Lock-Output (UVLO) circuit monitors the VIN supply voltage to prevent wrong logic controls. Additional under voltage protections monitor the voltage on FB pin for short-circuit protections.

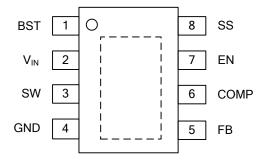

In application, the UTC P2680 is suitable for portable devices when it works as an ideal power supply in SOP-8L package.



- * 2A Output Current
- *340KHz frequency of operation
- * 4V~26V Input Voltage Range
- * 20µA Shutdown Supply Current
- * Output Adjustable
- * Frequency FoldBack at Short Circuit
- * VIN Under-voltage Lockout
- * Thermal Shutdown
- * OCP
- * Programmable Soft-Start
- * Up to 90% Efficiency

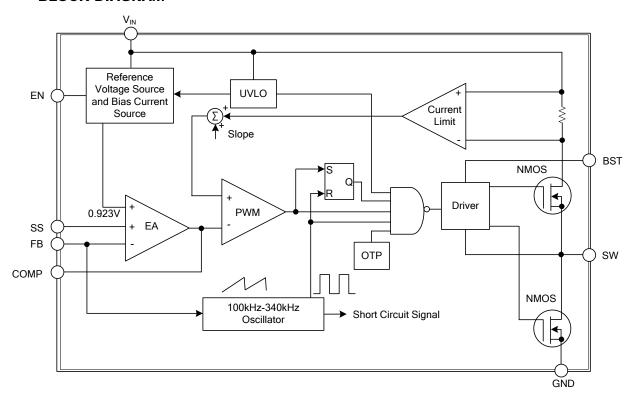
ORDERING INFORMATION


Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
P2680L-SH2-R	P2680G-SH2-R	HSOP-8	Tape Reel	



www.unisonic.com.tw 1 of 5

■ MARKING INFORMATION


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	BST	Bootstrap pin. Positive supply for the upper MOSFET driver.		
2	V_{IN}	Power supply pin.		
3	SW	Power switch output pin.		
4	GND	Ground pin.		
5	FB	The output voltage feedback pin. It is also the inverting input of the error amplifier.		
6	COMP	Compensation pin. It is also the output of the internal error amplifier.		
7	EN	Enable Input. A high input at EN turns on the converter, and a low input turns it off.		
8	SS	Soft-Start pin. Connect a capacitor from SS to GND to set the soft-start period. To disable the soft-start feature, leave SS unconnected.		

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
VIN Supply Voltage	V_{IN}	26	V
SW Voltage	V_{SW}	-1~V _{IN} +1	V
BST Voltage	V_{BST}	V _{SW} -0.3~V _{SW} +8	V
EN Voltage	V_{EN}	-0.3~6	V
FB Voltage	V_{FB}	-0.3~6	V
COMP Voltage	V_{COMP}	-0.3~6	V
Maximum Power Dissipation	P_D	0.76	W
Junction Temperature	TJ	-40~150	°C
Storage Temperature	T _{STG}	-55~150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (Note)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	4~26	V
Ambient Operating Temperature	T_A	-40 ~ +125	°C

Note: The device is not guaranteed to function outside its operating rating.

■ PACKAGE THERMAL CHARACTERISTICS (Note)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	105	°C/W
Junction to Case	$\theta_{ m JC}$	50	°C/W

Note: Measured on approximately 1" square of 1 oz. Copper surrounding device leads.

■ **ELECTRICAL CHARACTERISTICS** (T_A = 25°C, V_{IN} = 12V, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}	V _{OUT} = 5V, I _{LOAD} = 0A~1A	7		26	V
Feedback Voltage	V_{FB}	$4.5V \le V_{IN} \le 23V$, $V_{COMP} < 2V$	0.900	0.923	0.946	V
Switch On Resistance (High-Side)	R _{ONH}			0.20		Ω
Switch On Resistance (Low-Side)	R _{ONL}			0.20		Ω
SW Leakage		V _{EN} = 0V		0	8	μΑ
Current Limit	I _{LIM}		2.4			Α
Current Limit Gain. Output Current to Comp Pin Voltage				3.3		A/V
Error Amplifier Transconductance		$\Delta I_{COMP} = \pm 10 \mu A$		600		μΑ/V
Error Amplifier Gain				8000		V/V
Oscillator Frequency	Fosc		305	340	375	kHz
Short Circuit Frequency	F _{osc_s}	V _{FB} = 0V		100		kHz
Maximum Duty Cycle	D_{MAX}	V _{FB} = 0.7V		90		%
Minimum Duty Cycle	D_{MIN}	V _{FB} = 1.1V			0	%
Enable Threshold Voltage	V_{EN}	Hysteresis = 0.2V		1		V
Enable Pull-Up Current	I _{EN}	$V_{EN} = 0V$		4.8		μA
Supply Current in Shutdown	I _{SD}	$V_{EN} = 0V$		110		μA
IC Supply Current in Operation	Io	V _{EN} >2V, V _{FB} = 1.4V		0.9		mA
Soft-Start Current		V _{SS} = 0V		6		μΑ
Soft-Start Period		C _{SS} = 0.1µF		15		ms
Thermal Shutdown Temperature	Т	Hysteresis = 10°C		160		°C

^{2.} Exceeding these ratings may damage the device.

■ TYPICAL APPLICATION CIRCUIT

Figure 1. Shows an example UTC P2680 application circuit generating a 2.5V/2A output.

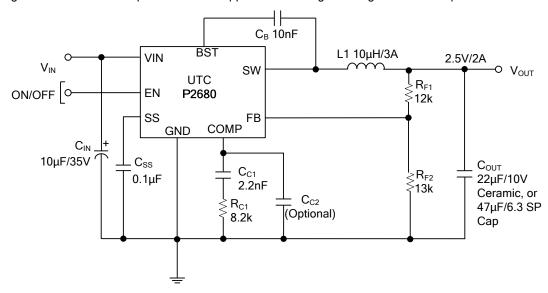


Figure 1. UTC P2680 2.5V/2A Output Application

Typical Compensation for Different Output Voltages and Output Capacitors

V_{OUT}	C _{OUT}	R _{C1}	C _{C1}	C _{C2} (Note)
2.5V	22µF Ceramic	8.2kΩ	2.2nF	None
3.3V	22µF Ceramic	12kΩ	1.5nF	None
5V	22µF Ceramic	15kΩ	1.5nF	None
2.5V	47µF SP CAP	15kΩ	1.5nF	None
3.3V	47µF SP CAP	15kΩ	1.8nF	None
5V	47µF SP CAP	15kΩ	2.7nF	None
2.5V	470μF/6.3V/30mΩ	15kΩ	15nF	1nF
3.3V	470μF/6.3V/30mΩ	15kΩ	22nF	1nF
5V	470μF/6.3V/30mΩ	15kΩ	27nF	None

Note: C_{C2} is needed for high ESR output capacitor.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.