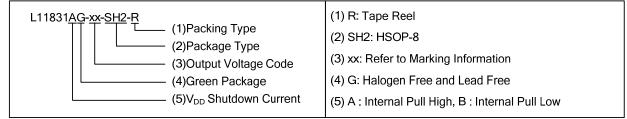

L11831A/B Preliminary CMOS IC

MAXIMUM 3A, ULTRA LOW DROPOUT REGULATOR WITH ENABLE

■ DESCRIPTION

The UTC **L11831A/B** is a positive voltage regulator with high performance. It has low dropout voltage and low input voltage, besides its output voltage can be fixed at 1V,1.05V, 1.2V, 1.5V, 1.8V, or 2.5V depending on internal feedback resistors or ADJ (not connected to the ground) with external feedback resistors. The input voltage of UTC **L11831A/B** can be low to 1.4V. There are two additional pin in the UTC **L11831A/B**. One is EN pin and the other is POK pin.

The UTC **L11831A/B** is specially made for applications with low input voltage, low dropout voltage, and low output voltage which is almost the same as the input voltage. Typical applications include motherboards, notebooks, set top boxes, network cards and peripheral cards.

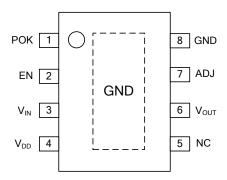

■ FEATURES

- * V_{IN} as low as 1.4V and V_{DD} voltage 5V
- * Maximum 3A low-dropout voltage regulator
- * High accuracy output voltage ±1.5%
- * When disable Vo pull low resistance
- * Internal over current and over temperature protection

■ ORDERING INFORMATION

Ordering Number	Package	Packing
L11831AG-xx-SH2-R	HSOP-8	Tape Reel
L11831BG-xx-SH2-R	HSOP-8	Tape Reel

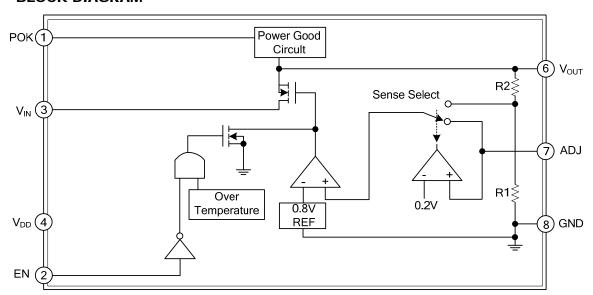
Note: xx: Output Voltage, refer to Marking Information.



<u>www.unisonic.com.tw</u> 1 of 6

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING		
HSOP-8	12: 1.2v 15 : 1.5V 18: 1.8V 25: 2.5V	A: Internal Pull High B: Internal Pull Low Voltage Code 1 2 3 4		


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	POK	This pin will indicate high under this situation: V ₀ reaches 90% of its rating voltage. Open-drain output.
2	EN	Chip enable (active-high) / (active-low)
3	V_{IN}	The pin of input voltage.
4	V_{DD}	This pin is for input voltage to control circuit.
5	NC	No internal connection
6	V_{OUT}	Output voltage
7	ADJ	When this pin connected to the ground, V_{OUT} will be set by the internal feedback resistors. Otherwise, if using external feedback resistors to decide the V_{OUT} , V_{OUT} = 0.8(R1+R2)/R2 Volts.
8	GND	Ground.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{DD},V_{IN}	6	V
Power Dissipation	P_D	Internally limited	
Junction Temperature	T_J	150	°C
Operation Temperature	T _{OPR}	-40~+85	°C
Storage Temperature	T _{STG}	-65~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{IN}	1.4~5.5	٧
Control Voltage (V _{DD} ≥V _{OUT} +1.5V)	V_{DD}	3~5.5	V
Junction Temperature Range	TJ	-40~125	°C
Ambient Temperature Range	T _A	-40~85	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	143	°C/W
Junction to Case	$\theta_{ m JC}$	14	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT} + 500 mV, \ V_{EN} = V_{DD} = 5V, \ C_{IN} = C_{OUT} = 10 \mu F, \ T_A = T_J = 25^{\circ}C, \ unless \ otherwise \ specified)$

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POR Threshold				2.4	2.7	3	V
POR Hysteresis					0.2		V
Adjustable Pin Threshol	ld	V_{TH_ADJ}	I _{OUT} =1mA		0.2	0.4	V
Reference Voltage (AD.	J Pin Voltage)	V_{ADJ}	I _{OUT} =1mA	0.788	0.8	0.812	V
Fixed Output Voltage R	ange	ΔV_{OUT}		-1.5	0	1.5	%
Line Regulation (V _{IN})		ΔV_{LINE_IN}	$V_{IN}=V_{OUT}+0.5V$ to 5V, $I_{OUT}=1$ mA		0.2	0.6	%
Load Regulation (Note 2	2)	ΔV_{LOAD}	V _{IN} =V _{OUT} +1V, I _{OUT} =1mA~3A		0.4	1	%
Dropout Voltage (Note 3	2)	\/	I _{OUT} =2A		200	250	mV
Dropout Voltage (Note 3	P)	V_{DROP}	I _{OUT} =3A		300	350	mV
Quiescent Current (Note	e 4)	ΙQ	V _{DD} =5.5V		0.9		mA
Current Limit		I _{LIM}		3.2	5.5		Α
Short Circuit Current			V _{OUT} <0.2V	0.5	1.8		Α
V _{OUT} Pull Low Resistance	ce		V _{EN} =0V		100		Ω
Chip Enable							
EN Input Bias Current		I _{EN}	V _{EN} =0V		12		μΑ
V _{DD} Shutdown Current	L11831A	Ι	N/ =0\/		10	20	μΑ
V _{DD} Shuldown Current	L11831B	I _{SHDN}	V _{EN} =0V			1	μΑ
CN Throubold Voltage	Logic-High	V_{ENH}	V _{DD} =5V	1.2			V
EN Threshold Voltage	Logic-Low	V _{ENL}	V _{DD} =5V			0.7	V
Power Good				•.		-	
POK Rising Threshold					90	93	%
POK Hysteresis				3	10		%
POK Sink Capability			I _{POK} =10mA		0.2	0.4	V
POK Delay				0.5	1.5	5	ms
Thermal Protection							
Thermal Shutdown Temperature		T _{SD}			160		°C
Thermal Shutdown Hysteresis		ΔT_{SD}			30		°C

Notes: 1. The device is not guaranteed to function outside its operating conditions.

- 2. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load regulation in the load range from 1mA to 3A.
- 3. The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} is $V_{\text{OUT}(\text{NORMAL})}$ -100mV.
- 4. Quiescent, or ground current, is the difference between input and output currents. It is defined by $I_Q=I_{IN}-I_{OUT}$ under no load condition ($I_{OUT}=0$ mA). The total current drawn from the supply is the sum of the load current plus the ground pin current.

■ TYPICAL APPLICATION CIRCUIT

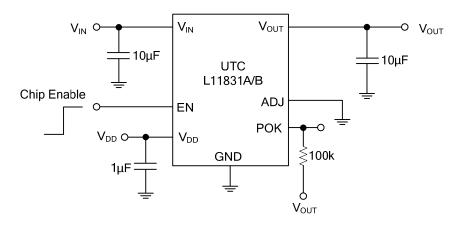


Figure 1. Fixed Voltage Regulator

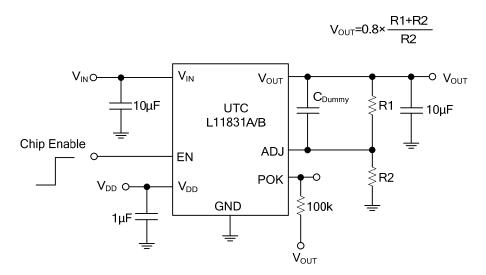


Figure 2. Adjustable Voltage Regulator

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.