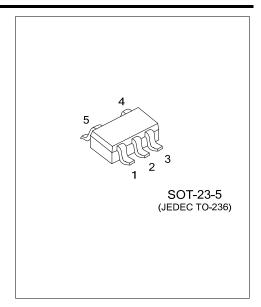
UNISONIC TECHNOLOGIES CO., LTD

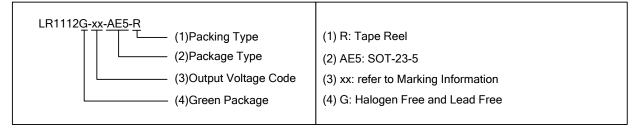

LR1112 **Preliminary**

LINEAR INTEGRATED CIRCUIT

150mA, LOW QUIESCENT **CURRENT, FAST TRANSIENT** LOW DROPOUT LINEAR REGULATOR

DESCRIPTION

The UTC LR1112 is a CMOS-based 150mA voltage regulator with low supply current, low dropout, adjustable and fixed output voltage, The device consists of pass element, error amplifier, band-gap, current limit and thermal shutdown circuitry. The device is turned on when EN pin is set to logic high level.

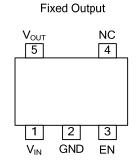

FEATURES

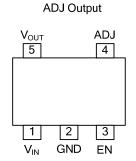
- * 150mA low dropout regulator with EN
- * Very low In over full load: 30uA
- * Wide input voltage range: 2.5~6V
- * Wide adjustable output: 0.8V~5.0V
- * Fixed output options: 1.0V~3.3V
- * Fast start-up time: 80µs
- * PSRR: 65dB at 100Hz
- * Stable with low ESR, 1µF ceramic output capacitor
- * Low dropout: 150mV typical at 150mA
- * Excellent Load/Line Transient Response
- * Current limit protection
- * Ambient temperature range: -40°C~85°C

ORDERING INFORMATION

Ordering Number	Package	Packing
LR1112G-xx-AE5-R	SOT-23-5	Tape Reel

Note: xx: Output Voltage, refer to Marking Information.

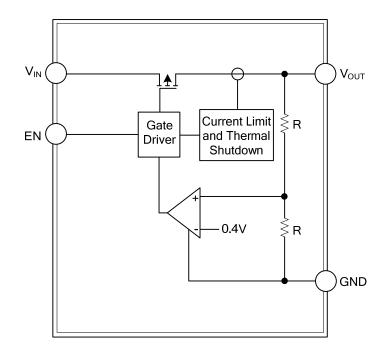



www.unisonic.com.tw 1 of 6

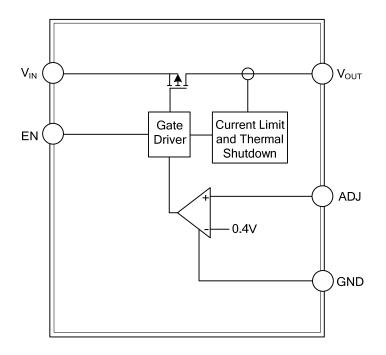
MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING		
SOT-23-5	AD: ADJ	SUXXG Voltage Code		

■ PIN CONFIGURATION



PIN DESCRIPTION


PIN NO. PIN NAME		DIN NAME	DESCRIPTION		
Fixed	ADJ	PIN NAIVIE	DESCRIPTION		
1	1	V_{IN}	Voltage input pin. Bypass to ground through at least 1µF capacitor		
2	2	GND	Ground		
3	3	EN	Enable input, active high		
-	4	ADJ	Output feedback pin		
4	-	NC	No connection		
5	5	V_{OUT}	Voltage output pin. Bypass to ground through 1µF ceramic capacitor		

■ BLOCK DIAGRAM

Fixed Version

Adjustable Version

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	7	V
EN Voltage		V _{IN} +0.3	V
Continuous Load Current	ntinuous Load Current Internal Limited		
Power Dissipation (Note 1)	P_{D}	640	mW
Operating Junction Temperature Range	T_OPR	-40~125	°C
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

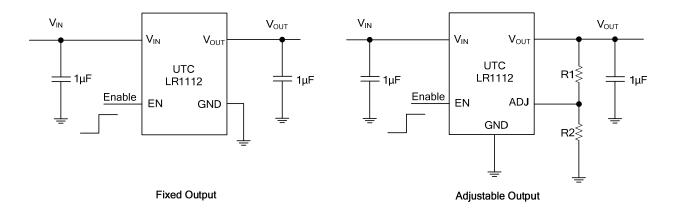
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}	2.5		6	V
Output Current (Note 2)	l _{оит}	0		150	mA
Operating Ambient Temperature	TA	-40		85	°C

■ THERMAL RESISTANCES CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	260	°C/W

Note: θ_{JA} is measured in the natural convection at T_A =25°C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

■ ELECTRICAL CHARACTERISTICS


 $(T_A=25^{\circ}C,\,V_{IN}=V_{OUT}+1V,\,C_{IN}=1\mu F,\,C_{OUT}=1\mu F,\,V_{EN}=2V,\,unless\,\,otherwise\,\,stated)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Quiescent Current	lΩ	V _{EN} =V _{IN} , I _{OUT} =0mA		30	50	μΑ
Imput Quiescent Current	IQ	V _{EN} =V _{IN} , I _{OUT} =150mA		50	85	μΑ
Input Shutdown Current	I _{SHDN}	V _{EN} =0V, I _{OUT} =0mA			1	μΑ
Input Leakage Current	I _{LEAK}	V _{EN} =0V, OUT grounded			1	μΑ
Dropout Voltage (Note 3)	$V_{Dropout}$	I _{ОUT} =150mA		150	300	mV
ADJ Reference Voltage (Adjustable Version)	V_{REF}	I _{OUT} =0mA		0.4		٧
ADJ Leakage (Adjustable Version)	I _{ADJ}				1	μΑ
Output Voltage Accuracy	V _{OUT}	T _A =-40°C~85°C, I _{OUT} =30mA	-2		2	%
Line Regulation	ΔV_{OUT} $\Delta V_{IN}/V$	V _{IN} =(V _{OUT} +1V)~V _{IN-Max} , V _{EN} =V _{IN} , I _{OUT} =1mA		0.01	0.20	%/V
Load Regulation	ΔV _{OUT} /V _{OUT}	V _{IN} =(V _{OUT} +1V)~V _{IN-Max} , I _{OUT} from 1mA to 150mA	-0.6		0.6	%
Start-Up Time	t _{ST}	V _{EN} =0V~2.0V, V _{OUT} =1.8V I _{OUT} =150mA		80		μs
PSRR	PSRR	$V_{IN}=[V_{OUT} +1V]V_{DC}+0.5VppAC,$ f =100Hz, I_{OUT} =30mA		65		dB
Current Limit	I _{LIMIT}	V _{IN} =(V _{OUT} +1V)~V _{IN-Max} , V _{OUT} /R _{OUT} =0.5A	200	300		mA
EN Input Logic Low Voltage	V_{IL}	$V_{IN}=V_{IN-Min} \sim V_{IN-Max}$			0.4	V
EN Input Logic High Voltage	V _{IH}	V _{IN} =V _{IN-Min} ~V _{IN-Max}	1.4			V
Thermal Shutdown Threshold	T _{SHDN}			140		°C
Thermal Shutdown Hysteresis	T _{HYS}			15		°C

Notes: 1. Ratings apply to ambient temperature at 25°C

- 2. The device maintains a stable, regulated output voltage without a load current.
- 3. Dropout voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value. This parameter only applies to output voltages above 1.8V.

■ TYPICAL APPLICATION CIRCUIT

$$V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2}\right)$$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.