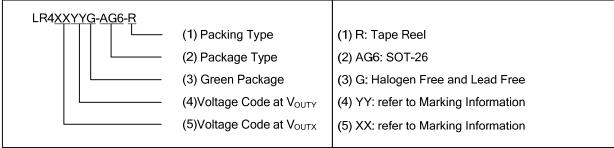

LR4XXYY **CMOS IC Preliminary** 

# Dual, Low-Noise, 200mA LDO REGULATOR

#### DESCRIPTION

The UTC LR4XXYY are dual voltage regulator ICs that have high output voltage accuracy, low dropout, low supply current, and high ripple rejection. Every Channel of UTC LR4XXYY series consists of a voltage reference unit and over temperature protection, simultaneity; also consists of an error amplifier, a current limit circuit, resistors for setting output voltage, and a chip enable circuit, respectively. The EN1 and EN2 pins control each output respectively, When both outputs shutdown simultaneously, the chip will be turn off and consumes nearly zero operation current which is suitable for battery-power devices.

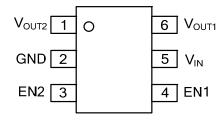
The load transient response and line transient response of the UTC LR4XXYY Series are excellent, so these ICs are suitable for hand-held communication equipment power supply.




#### **FEATURES**

- \* 200mA Guaranteed Output Current(Each LDO)
- \* Dual Shutdown Pins Control Each Output
- \* 120mV Dropout at 100mA Load
- \* Current Limiting Protection
- \* Thermal Shutdown Protection
- \* Excellent Line/Load Transient
- \* RoHS Compliant and 100% Lead (Pb)-Free

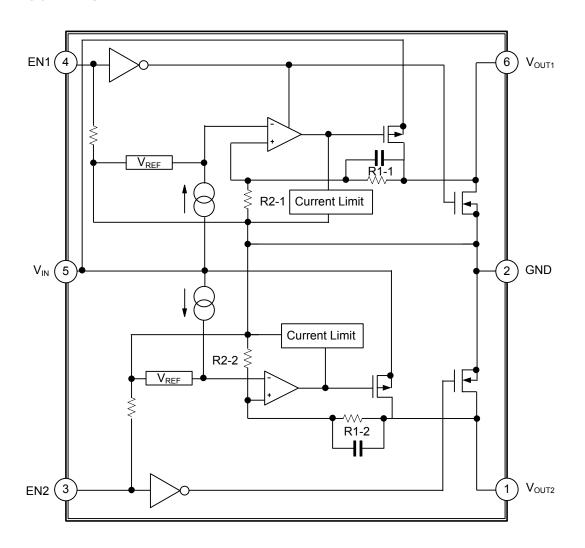
## **ORDERING INFORMATION**


| Ordering Number                                           | Package | Packing   |
|-----------------------------------------------------------|---------|-----------|
| LR4XXYYG-AG6-R                                            | SC59-6  | Tape Reel |
| Note: XXYY: Output Voltage, refer to Marking Information. |         |           |
| 1 B 4 0 0 4 0 0 B                                         |         |           |



# ■ MARKING INFORMATIONS

| DACKACE Code |      | VOLTAGE CODE |          | MARKING                                          |  |  |
|--------------|------|--------------|----------|--------------------------------------------------|--|--|
| PACKAGE      | Code | XX           | YY       |                                                  |  |  |
|              | Α    | 28: 2.8V     | 28: 2.8V | 6 5 4                                            |  |  |
| SOT-26       | В    | 30: 3.0V     | 30: 3.0V | <del>[                                    </del> |  |  |
|              | С    | 12: 1.2V     | 18: 1.8V | Voltage Code ◀ F4XG                              |  |  |
|              | D    | 18: 1.8V     | 28: 2.8V | H H H                                            |  |  |
|              | Ε    | 18: 1.8V     | 33: 3.3V | $\overline{1} \overline{2} \overline{3}$         |  |  |
|              | F    | 33: 3.3V     | 18: 1.8V |                                                  |  |  |


# **■ PIN CONFIGURATIONS**



# **■ PIN DESCRIPTION**

| PIN NO. | PIN NAME          | DESCRIPTION                           |
|---------|-------------------|---------------------------------------|
| 1       | $V_{OUT2}$        | Channel 2's voltage output            |
| 2       | GND               | Ground                                |
| 3       | EN2               | Channel 2's output enable control Pin |
| 4       | EN1               | Channel 1's output enable control Pin |
| 5       | $V_{IN}$          | Voltage Input pin                     |
| 6       | V <sub>OUT1</sub> | Channel 1's voltage output            |

# ■ BLOCK DIAGRAM



# ■ ABSOLUTE MAXIMUM RATINGS (Note 1)

| PARAMETER                             | SYMBOL           | RATINGS            | UNIT |  |
|---------------------------------------|------------------|--------------------|------|--|
| Supply Input Voltage(Operating)       |                  | 2.5 ~ 5.5          | V    |  |
| Supply Input Voltage(Survival)        |                  | -0.3 ~ +6.5        | V    |  |
| Enable Input Voltage                  | $V_{EN}$         | 0 ~ 5.5            | V    |  |
| Lead Temperature (Soldering, 10 sec.) |                  | +260               | °C   |  |
| ESD Rating (Note 2)                   |                  | 2                  | kV   |  |
| Junction Temperature                  | TJ               | -40 ~ +125         | °C   |  |
| Storage Temperature Range             | T <sub>STG</sub> | -65 ~ <b>+</b> 150 | °C   |  |
| Operation Temperature Range           | T <sub>OPR</sub> | -40 ~ +85          | °C   |  |

## ■ ELECTRICAL CHARACTERISTICS

(V<sub>IN</sub> = V<sub>OUT</sub>+0.5V or 2.5V, C<sub>IN</sub> = C<sub>OUT</sub> = 2.2μF, EN1=EN2=V<sub>IN</sub>, T<sub>A</sub>= 25°C, for each LDO unless otherwise specified)

| PARAMETER                                 | SYMBOL            | TEST CONDITIONS                                                       | MIN  | TYP  | MAX  | UNIT              |
|-------------------------------------------|-------------------|-----------------------------------------------------------------------|------|------|------|-------------------|
| Output Voltage Accuracy (Load Regulation) | ΔV <sub>OUT</sub> | I <sub>OUT</sub> =1mA to 200mA                                        | -2   |      | +2   | %                 |
| Maximum Output Current                    | I <sub>MAX</sub>  | Continous                                                             | 200  |      |      | mA                |
| Current Limit                             | I <sub>LIM</sub>  | R <sub>LOAD</sub> =1Ω                                                 | 500  |      | 1000 | mA                |
| Quiescent Current                         | I <sub>G</sub>    | No Load                                                               |      | 165  | 260  | μΑ                |
|                                           |                   | I <sub>OUT</sub> =100mA(Both LDOs)                                    |      | 165  | 260  | μΑ                |
| Dropout Voltage(Note3)                    | $V_{DROP}$        | I <sub>OUT</sub> =1mA                                                 |      | 20   |      | mV                |
|                                           |                   | I <sub>OUT</sub> =100mA                                               |      | 120  |      | mV                |
|                                           |                   | I <sub>OUT</sub> =200mA                                               |      | 255  |      | mV                |
| Line Regulation                           | $\Delta V_{LINE}$ | V <sub>IN</sub> =(Vout+0.5V or 2.5V) to 5.5V<br>I <sub>OUT</sub> =1mA | -0.2 |      | +0.2 | %/V               |
| En Input High Threshold                   | V <sub>IH</sub>   | V <sub>IN</sub> =2.5V to 5.5V                                         | 1.6  |      |      | V                 |
| En Input Low Threshold                    | V <sub>IL</sub>   | V <sub>IN</sub> =2.5V to 5.5V                                         |      |      | 0.4  | V                 |
| En Input Bias Current                     | I <sub>SD</sub>   | EN=GND or V <sub>IN</sub>                                             |      |      | 100  | nA                |
| Shutdown Supply Current                   | $I_{GSD}$         | EN1=EN2=GND                                                           |      | 0.01 | 2    | μA                |
| Thermal Shutdown Temperature              | $T_{SD}$          |                                                                       |      | 140  |      | °C                |
| Thermal Shutdown Hysteresis               | $\Delta T_{SD}$   |                                                                       |      | 10   |      | °C                |
| Output Voltage Noise                      | e <sub>NO</sub>   | 10~100kHz,C <sub>OUT</sub> =4.7μF,<br>I <sub>LOAD</sub> =1mA          |      | 124  |      | μV <sub>RMS</sub> |
| Output Voltage AC PSRR                    | PSRR              | 100Hz, $C_{OUT}$ =4.7 $\mu$ F<br>$I_{LOAD}$ =100mA                    |      | 62   |      | dB                |

- Notes: 1. Limits beyond which damage to the device may occur is indicated by absolute maximum ratings. Conditions for which the device is intended to be functional is indicated by operating ratings, but specific performance` limits isn't be guaranteed. Only for the test conditions listed the guaranteed specifications can be applied. When the device is not operated under the listed test conditions some performance characteristics may degrade.
  - 2. Which discharged through a  $1.5k\Omega$  resistor into each pin is a 100pF capacitor in the human body model.
  - 3. The dropout voltage is defined as  $V_{IN} V_{OUT}$ , which is measured when  $V_{OUT}$  is  $V_{OUT(NORMAL)} 100$ mV.

# ■ TEST CIRCUITS

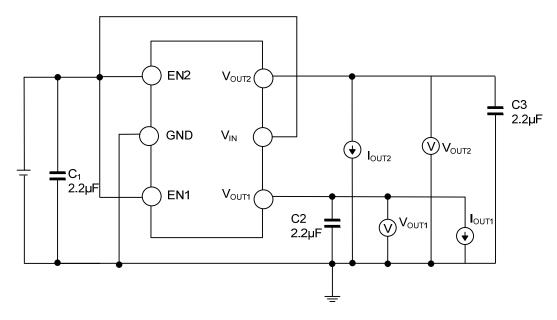



Fig.1 Standard Test Circuit

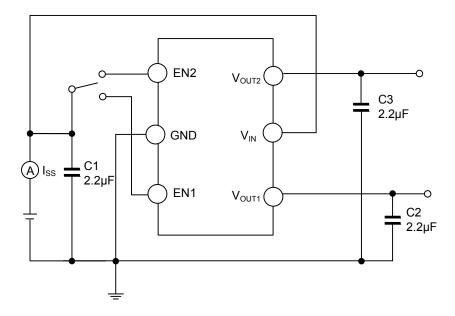



Fig.2 Supply Current Test Circuit

# ■ TEST CIRCUITS(Cont.)

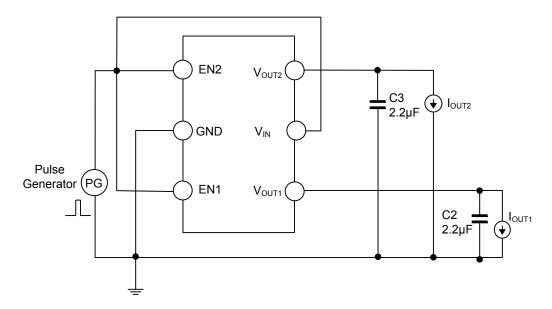



Fig.3 Ripple Rejection, Line Transient Response Test Circuit

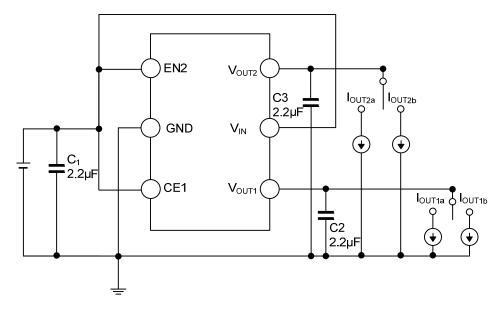
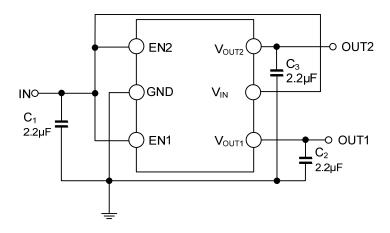




Fig.4 Load Transient Response Test Circuit

## TYPICAL APPLICATION CIRCUIT



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.