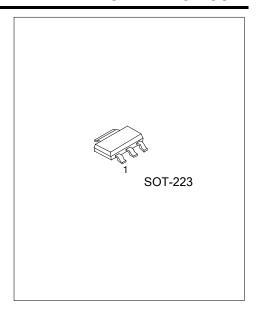
LD2127/A

Preliminary

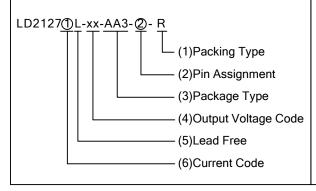
LINEAR INTEGRATED CIRCUIT


LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE REGULATORS

DESCRIPTION

The UTC LD2127/A is a low dropout, 3-terminal positive voltage regulator designed to provide output current up to 800mA/1A, There are adjustable versions (V_{REF}=1.0V) and various fixed versions.

FEATURES

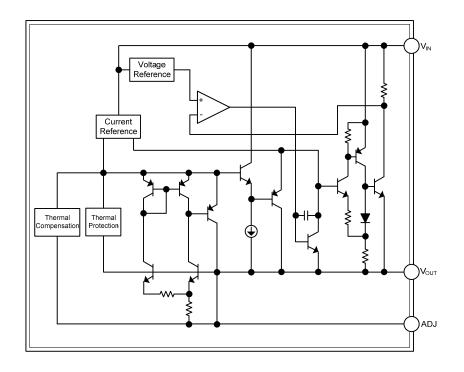

- * Low dropout voltage
- * Suitable for SCSI-2 active termination if V_{OUT} set to 2.85V
- * Output current up to 0.8A for 2127 and 1.0A for 2127A
- * Built-in current limit and over temperature protection
- * Ultra low Adjustment Current (7µA typ.)
- * Ultra low minimum Load (0.3mA typ.)
- * Stable with low ESR ceramic output capacitor (MLCC)

ORDERING INFORMATION

Ordering Number		Dookogo	2	Dooking	
Lead Free	Halogen Free	Package	Pin Assignment	Packing	
LD2127①L-xx-AA3-②-R			A: AOI		
	LD2127@C vv AA2 @ D	COT 222	B: OAI	Packing Tape Reel	
	LD2127@G-xx-AA3-@-R	SOT-223	C: AIO		
			D: IAO		

Note: Pin Assignment: I: V_{IN} $O:V_{OUT}$ A: ADJ

- (1) R: Tape Reel
- (2) refer to Pin Assignment
- (3) AA3: SOT-223
- (4) xx: refer to Marking Information
- (5) L: Lead Free, G: Halogen Free
- (6) Blank: 800mA, A: 1A


www.unisonic.com.tw 1 of 6 QW-R102-054.a

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-223	AD :ADJ	Current Code LD2127 G: Halogen Free Pin Code Voltage Code 1 2 3

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
DC Input Voltage	V_{IN}	18	V
Power Dissipation	P_D	Internally limited	W
Junction Temperature	T_J	+150	°C
Storage temperature	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V _{IN}	15	V
Operating Junction Temperature	TJ	0 ~ +125	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	165	°C/W
Junction to Case	θ_{JC}	15	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, refer to the test circuits, T_J=0 \sim 125^{\circ}C, C_O=10\mu F unless otherwise specified)$

For LD2127/A-ADJ

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT	
Reference Voltage	V_{REF}	V _{IN} -V _{OUT} =2V, I _{OUT} =10mA,	0.98	1.0	1.02	V	
Reference Voltage	V _{REF}	V _{IN} -V _{OUT} =1.4~10V LD2127A : I _{OUT} =10~1000n	0.98	1.0	1.02	V	
Line Regulation	ΔV_{OUT}	$V_{IN}-V_{OUT}=1.5 \sim 13.75V, I_{OU}$		0.5		%	
Load Regulation	ΔV _{OUT}	V _{IN} -V _{OUT} =3V LD2127 : I _{OUT} =10~800m. LD2127A : I _{OUT} =10~1000r		2.0		%	
Temperature stability	ΔV_{OUT}				0.50		%
Long Term Stability	ΔV_{OUT}	1000 hrs, T _J =125°C		0.3		%	
Operating Input Voltage	V _{IN}				15	V	
Adjustment Pin Current	I _{ADJ}	V _{IN} ≤15V			7	10	μΑ
Adjustment Pin Current Change	Δl _{ADJ}	V _{IN} -V _{OUT} =1.4~10V, LD2127A: I _{OUT} =10 ~ 1000mA			0.3	2	μA
Minimum Load Current	I _{O(MIN)}	V _{IN} =15V			0.3	1	mA
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =5V, T _J =25°C	LD2127 LD2127A	800 1000			mA
Output Noise (%V _O)	e _N	B=10Hz ~ 10KHz, T _J =25°0	2		0.003		%
Supply Voltage Rejection	SVR	I _{OUT} =40mA, f=120Hz, T _J =25°C, V _{IN} -V _{OUT} =3V, V _{RIPPLE} =1V _{PP}		75			dB
Dropout Voltage	V _D	I _{OUT} =100mA			1.05	1.15	
		I _{OUT} =500mA			1.15	1.25	V
		I _{OUT} =800mA			1.18	1.28	
		I _{OUT} =1A			1.22	1.35	
Thermal Regulation		T _A =25°C, 30ms Pulse			0.01	0.10	%/W
Thermal Shutdown	OTP				150		°C

■ APPLICATION NOTE of LD2127/A ADJUSTABLE

The **LD2127/A** adjustable has a reference voltage of between the OUT and ADJ pins. I_{ADJ} is $7\mu A$ typ. (10 μA max.) and ΔI_{ADJ} is $0.3\mu A$ typ. (2 μA max.).

 R_1 is normally fixed to 1.2k Ω .

From figure 1 we obtain:

 $V_{OUT} = V_{REF} + R_2(I_{ADJ} + I_{R1}) = V_{REF} + R_2(I_{ADJ} + V_{REF}/R_1) = V_{REF}(1 + R_2/R_1) + R_2 \times I_{ADJ}$

Usually R_2 value is in the range of few $K\Omega$, so the R_2 X I_{ADJ} product could be neglected; then the above expression becomes: $V_{OUT}=V_{REF}(1+R_2/R_1)$

For better load regulation, realize a good Kelvin connection of R_1 and R_2 is important. Particularly R_1 connection must be realized very close to OUT and ADJ pin, while R_2 ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a $10\mu F$ electrolytic capacitor placed in parallel to the R_2 resistor (See Fig. 2)

The UTC LD2127/A also supports MLCC. See Fig.3 for adjustable output.

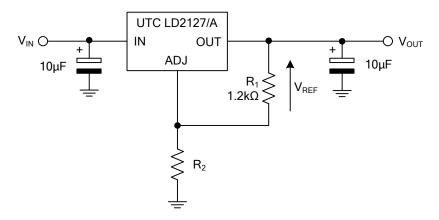


Fig.1 Adjustable Output Voltage Application Circuit

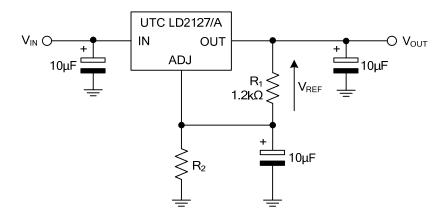


Fig.2 Adjustable Output Voltage Application with improved Ripple Rejection.

■ APPLICATION NOTE of LD2127/A ADJUSTABLE(Cont.)

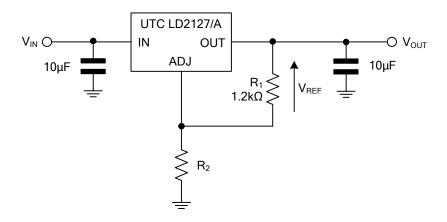
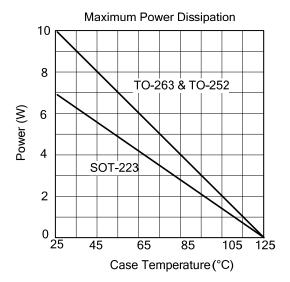



Fig.3 Adjustable Output Voltage Application Circuit for MLCC

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.