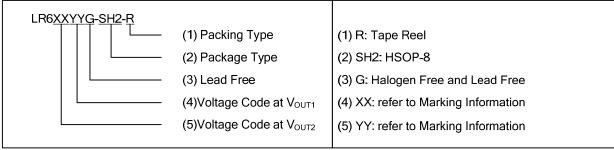

LR6XXYY Preliminary CMOS IC

DUAL OUTPUT LOW ESR CAP LOW-DROPOUT 600MA LINEAR REGULATOR

■ DESCRIPTION

The UTC **LR6XXYY** is a low noise and high accuracy LDO voltage regulator which has the soft start function. Designers can reduce power consumption more easily by applying EN function that can turn off the output of each device and control the in rush current through the soft start function.

The UTC **LR6XXYY** comes with low design cost and outstanding output stability and its compatibility of working with low ESR ceramic capacitors is undoubted. Besides, the level of stability is ensured by the perfect transient response and PSRR derived from a large frequency range.

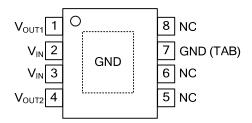


■ FEATURES

- * V_D =470mV @600mA (Typ.), $V_{OUT} \ge 3.3V$
- * Range of Output Current:600mA / Channel
- * Low Power Consumption:50µA (V_{OUT1} and V_{OUT2} Enable Mode).
- * Standby Current:0.1µA (Typ.)
- * Accurate : ±2%
- * High PSRR: 65 dB at 1kHz.
- * Each Channel Output Current Limit Protection:950mA
- * With Short Circuit Protection
- * Output ON/OFF Control Function

■ ORDERING INFORMATION

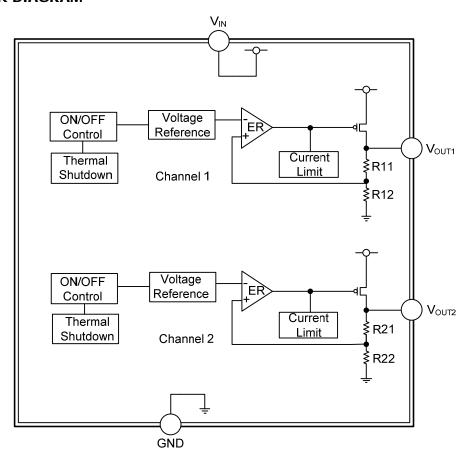
Ordering Number	Package	Packing		
LR6XXYYG-SH2-R	HSOP-8	Tape Reel		
Note: xx: Output Voltage, refer to Marking Information.		·		



<u>www.unisonic.com.tw</u> 1 of 5

MARKING INFORMATIONS

DACKACE	VOLTAG	E CODE	MARKING
PACKAGE	XX	YY	8 7 6 5
HSOP-8	12:1.2V	33:3.3V	UTC □□□□ → Date Code LR6XXYYG → Voltage Code at V _{OUT2}
H50P-8	33:3.3V	33:3.3V	Voltage Code at Volt12 Lot Code 1 2 3 4


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{OUT1}	Output 1
2, 3	V_{IN}	Power input
4	V_{OUT2}	Output 2
5, 6, 8	NC	No connection
7	GND (TAB)	Ground

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

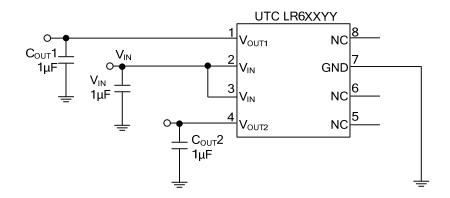
PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	7	V
EN Pin Voltage	V_{EN}	7	V
Ambient Temperature	T _A	-40 ~ 85	°C
Junction Temperature	T_J	150	°C
Storage Temperature	T _{STG}	-65 ~ 150	°C

Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ_{JA}	60	°C/W
Junction to Case	θ_{JC}	15	°C/W

■ ELECTRICAL CHARACTERISTICS


 $(V_{IN}=V_{OUT}+1V, V_{EN1}=V_{EN2}=V_{IN}, T_{J}=25^{\circ}C, unless otherwise specified)$ (Note 1)

PARAMETER	SYMBOL	TEST CONDITIONS			TYP	MAX	UNIT
Input Voltage (Note 2)	V_{IN}			1.6		6.0	V
Output Voltage Tolerance	V _{OUT}	V _{IN} =6.0V, I _{OUT} =1mA		-2		2	%
Continuous Output Current	I _{OUT}			600			mA
Quiescent Current	ΙQ	$V_{EN2}=V_{EN1}=V_{IN}$			50	80	μΑ
GND Pin Current	I _{GND}	I_{OUT1} = 600mA, I_{OUT2} = V_{EN2} = V_{EN1} = V_{IN}	=600mA,		55	80	μA
Standby Current	I _{STBY}	V _{EN1} =V _{EN2} =0				0.1	μA
Output Current Limit	I _{IL}			650	950		mA
Short Circuit Current		V _{OUT} =GND			400		mA
			V _{OUT} =1.8V		710	850	mV
Dropout Voltage	V_{DROP}	I _{OUT} =600mA	V _{OUT} =2.5V		580	700	mV
			V _{OUT} =3.3V		470	560	mV
Line Regulation	ΔV_{LIR}	V _{IN} =V _{OUT} + 1V~6V			3	16	mV
Load Regulation	ΔV_{LOR}	I _{OUT} =1mA~600mA			2	10	mV
Ripple Rejection	PSRR	f=1kHz, Ripple=0.5V _{P-P} ,			65		dB
Output Noise Voltage		f= 10~100KHz	f= 10~100KHz		24		μVrms
Temperature Coefficient	TC				50		ppm/°C
Thermal Shutdown		V _{IN} =V _{OUT} +1V			150		°C
Temperature					25		00
Thermal Shutdown Hysteresis					35		°C
EN PIN SPECIFICATIONS		N N N		1	1	0.4	
EN Pin Current	I _{EN}	V _{EN1} =V _{EN2} = V _{IN}			400	0.1	μA
Shutdown Exit Delay Time	Δt				100		μS
Max Output Discharge Resistance to GND During Shutdown	RDSON_ CLMP				20		Ω
EN Input Throshold	V_{ENH}	Output ON		1.6			V
EN Input Threshold	V _{ENL}	Output OFF				0.25	V

Notes: 1. Specifications are production tested at T_A =25°C. Specifications over the -40°C~85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

2. $V_{IN}(min)$ is the higher value of V_{OUT} + Dropout Voltage or 1.6V.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.