LR2125

LINEAR INTEGRATED CIRCUIT

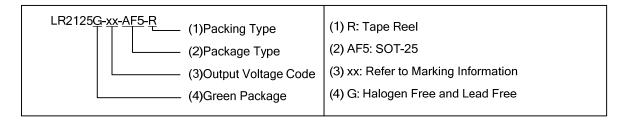
300mA SELECTABLE FIXED/ADJUSTABLE LOW DROPOUT LINEAR REGULATOR

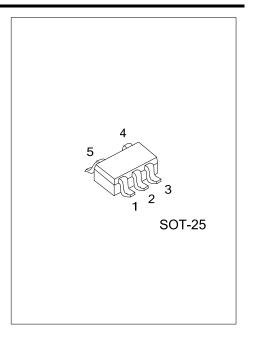
■ DESCRIPTION

As a low dropout linear regulator, the UTC **LR2125** only needs low input voltage (2.8~6V) and can deliver current to 300mA for setting the output voltage.

The UTC **LR2125** is an ideal for being used in such battery-powered equipments notebook, personal computer and cellular phone. Its typical dropout voltage is 230mV at loading current 300mA.

For setting the output voltage, the UTC LR2125 has two output voltage operation modes: fixed mode senses the output voltage on V_{OUT} , ADJ mode needs two resistors as a voltage divider.

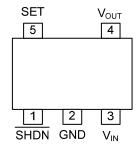

To protect itself against current over-loads and over temperature, the **LR2125** has current limit and thermal shutdown functions.


■ FEATURES

- * Operating Voltage: 2.8~6V
- * Low Voltage Dropout
- * Output Current Guaranteed 300mA
- * For Setting Output Voltage Two Modes
 - Fixed mode :Fixed Output Voltage 1~5V
 - ADJ mode: Adjustable Output Voltage 0.8~5.5V
- * Internal Current Limit Protection
- * With Soft-Start
- * Internal thermal Protection
- * Work stably with Low ESR Ceramics Capacitor

ORDERING INFORMATION

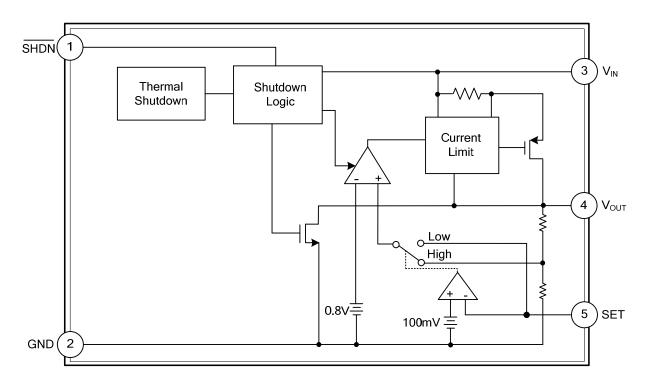
Ordering Number	Package	Packing
LR2125G-xx-AF5-R	SOT-25	Tape Reel



<u>www.unisonic.com.tw</u> 1 of 8

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-25	12: 1.2V 18: 1.8V 25: 2.5V 33: 3.3V AD: ADJ	SEXXG Voltage Code 1 2 3


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION
		Control pin for shutdown
1	SHDN	Logic High: enable
		Logic Low: shutdown
2	GND	Ground
3	V_{IN}	Voltage supply
4	V_{OUT}	Output pin
		When this pin is connected to ground, turns to fixed output voltage operation.
5	SET	When this pin is connected to an external resistor divider, turns to adjustable output
		voltage mode operation.

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A = 25°C, Unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
V _{IN} Supply Voltage (V _{IN} to GND)	V_{IN}	-0.3 ~ +6.5	V
SHDN Input Voltage (SHDN to GND)	$V_{\overline{SHDN}}$	-0.3 ~ +6.5	V
Power Dissipation	P _D	380	mW
Junction Temperature	TJ	-40~ +125	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
V _{IN} Supply Voltage	V_{IN}	2.8 ~ 6	V
Output Voltage	V _{OUT}	0.8 ~ 5.5	V
V _{OUT} Output Current	I _{OUT}	0 ~ 300	mA
Input Capacitor	C _{IN}	0.22 ~ 100	μF
Output Capacitor	Соит	1.5 ~ 33	μF
Junction Temperature	T _{OPR}	-40 ~ +85	°C

■ ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT} + 1V \text{ (min } V_{IN} = 2.8V), I_{OUT} = 0 \sim 300 \text{mA}, C_{IN} = 1 \mu\text{F}, C_{OUT} = 2.2 \mu\text{F}, T_A = 25 °C, unless otherwise specified)}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage	V _{OUT}		0.8		5.5	V
Input Voltage	V_{IN}		2.8		6	V
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	△V _{OUT} %/△V _{IN} , I _{OUT} =10mA	-0.07		+0.07	%/V
Load Regulation	$\frac{\Delta V_{OUT}}{\Delta I_{OUT} \times V_{OUT}}$	△V _{OUT} %/△I _{OUT}	-0.4		+0.4	%/A
Output Voltage Accuracy		Fixed output voltage, I _{OUT} =10mA	-2		+2	%
Reference Voltage	V_{REF}	Measured on SET, V _{IN} =2.8V, I _{OUT} =10mA	0.784	0.8	0.816	V
Quiescent Current	IQ	I _{OUT} =10mA ~300mA		135	160	μΑ
Dropout Voltage	\/	$V_{OUT} = 2.5V, I_{OUT} = 300mA$		230	360	mV
Dropout Voltage	V_D	$V_{OUT} = 3.3V, I_{OUT} = 300mA$		170	300	mV
Power Supply Ripple Rejection Ratio	PSRR	f = 10kHz, I _{OUT} = 300mA		45		dB
Output Voltage Noise	eN	$f = 80Hz \sim 100KHz, I_{OUT} = 300mA$		160		μV_{RMS}
Current Limit	I _{LIMIT}		400	500	650	mA
Shutdown Threshold	V_{IH}		1.6			V
Silutdowii Tillesiloid	V _{IL}				0.4	V
Shutdown Supply Current	loff	SHDN = Low, V _{IN} = 6V		0.1	1	μΑ
V _{OUT} Discharge MOSFET R _{DS(ON)}		SHDN = Low		60		Ω
Thermal Shutdown Temperature	T _{SHDN}			160		°C
Thermal Shutdown Hysteresis	DT _{SHDN}			40		°C
SET Input Threshold for				100		m\/
Fixed/Adjustable Output Voltage Mode				100		mV
SET Input Bias Current			-100		100	nA
Soft-Start Interval	T _{SS}			60		μs

APPLICATION INFORMATION

Input Capacitor

Value:

Larger than 1µF, at least a 1µF ceramic capacitor

Place:

Be placed near the V_{IN} very closely Purpose and Advantage Description :

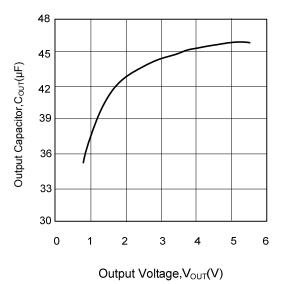
To prevent the input rail from dropping, this capacitor can provide surge current as while as the circuit's stepping load transients.

Output Capacitor

Value:

Larger than 2.2µF

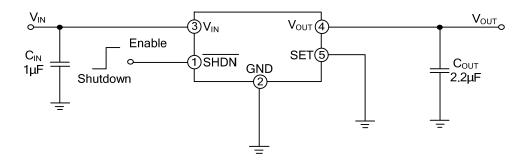
Place:

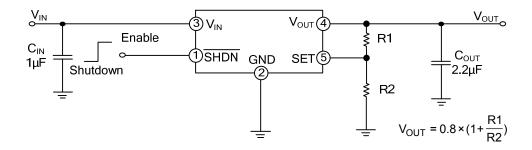

Be placed at the load and near the GND pin very closely.

Purpose and Advantage Description:

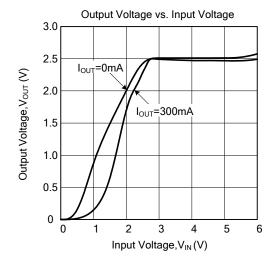
Mainly make sure the circuit's operating stability. And the large value capacitor also can reduce noise and improve transient response. Additionally, it can affect power on issue.

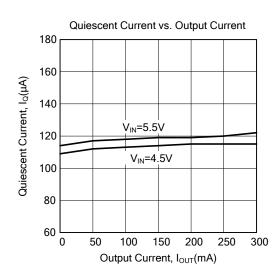
$$C_{OUT(max)} = 87 \times (0.55 - \frac{0.1155}{V_{OUT}})$$

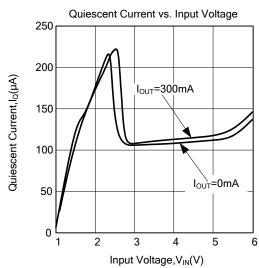

Maximum Output Capacitor's Value (µF) and the Output Voltage (V)'s Value's Relationship

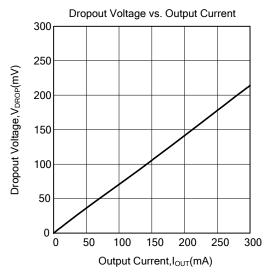

Maximum Output Capacitor's Changing Over Vout.

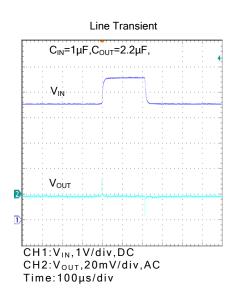
■ TYPICAL APPLICATION CIRCUITS

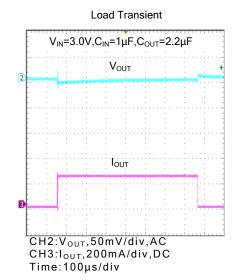

For Fixed Output Voltage Mode

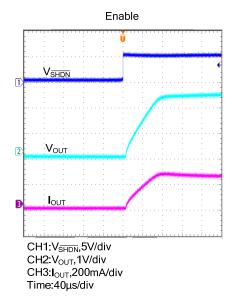


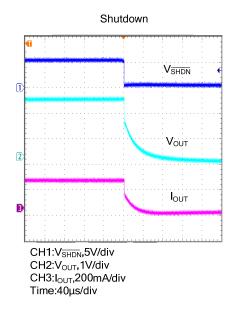

For Adjustable Output Voltage Mode




TYPICAL CHARACTERISTICS







■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.