

General Description

The BL1302A57/S is an A-law monolithic PCM CODEC/filter which has the A/D and D/A conversion and a serial PCM interface. The device is fabricated using the advanced double-poly nwell CMOS process. It is pin compatible with TP3057.

The encode portion of each device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz and above 3400 Hz. Also included are auto-zero circuitry and a companding coder which samples the filtered signal and encodes it in the companded A-law PCM format. The decode portion consists of an expanding decoder, which reconstructs the

Analog signal from the companded A-law code, a low-pass filter which corrects for the sinx/x response of the decoder output and rejects signals above 3400 Hz followed by a single-ended power amplifier capable of driving low impedance loads. The device requires two 1.536 MHz, 1.544 MHz or 2.048 MHz transmit and receive master clocks, which may be asynchronous; transmit and receive bit clocks , which may vary from 64 KHz to 2.048 MHz; and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats.

Features

- Complete CODEC and filtering system (COMBO) including:
 - --- Transmit high-pass and low-pass filtering
 - --- Receive low-pass filter with sinx/x correction
 - --- Active RC noise filters
 - --- A-law compatible COder and DECoder
 - --- Internal precision voltage reference
 - --- Serial I/O interface
 - --- Internal auto-zero circuitry
- 16 pin DIP or SOP
- Designed for ITU application

- ±5V operation
- Low power: Typical 50mW
- Stand-by 3mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces

Block Diagram

Pin Description

Symbol	Function
V _{BB}	Negative power supply pin. V_{BB} = - 5V \pm 5%
GNDA	Analog ground. All signals are referenced to this pin.
VF _R O	Analog output of the receive power amplifier.
V _{CC}	Positive power supply pin. Vcc= $+5V\pm5\%$
FS _R	Receive frame sync pulse which enables $BCLK_R$ to shift PCM data into D_R .FS _R is an 8kHz
	pulse train.
D _R	Receive data input. PCM data is shifted into D_R following the FSR leading edge.
BLCLK _R /CLKSEL	The bit clock which shifts data into D_R after the FS_R leading edge. May vary from 64kHz to
	2.048 MHz. Alternatively , may be a logic input which selects either 1.536 MHz/1.544 MHz
	or 2.048 MHz for master clock in synchronous mode and BCLKx is used for both transmit
	and receive directions(see Table 1).
MCLK _R /PDN	Receive master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. In synchronous
	mode, it may be needed as a power-down control. When \ensuremath{MCLK}_R is connected continuously
	low, MCLKx is selected for all internal timing. When MCLK_R is connected continuously
	high, the device is powered down.
MCLKx	Transmit master clock. Must be 1.536 MHz, 1.544 MHz or 2.048 MHz. In synchronous
	mode, it is also used as receive master clock.
FSx	Transmit frame sync pulse input which enables BCLKx to shift out the PCM data on Dx. FSx
	is an 8 KHz pulse train.
BCLKx	The bit clock which shifts out the PCM data on Dx. May vary from 64 kHz to 2.048 MHz, but
	must be synchronous with MCLKx.
Dx	The TRI-STATE PCM data output which is enabled by FSx.
TSx	Open drain output which pulses low during the encoder time slot.
GSx	Analog output of the transmit input amplifier. Used to externally set gain.
VFx I-	Inverting input of the transmit input amplifier.
VFx I+	Non-inverting input of the transmit input amplifier.

Functional Description

• Power-up

When power is first applied, the internal power-on reset circuitry initializes the device and places it into a power-down state. Most of the analog and digital circuits are deactivated, and the D_X and VF_RO outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin and FSx and/or FS_R pulses must be present. <u>http://www.belling.com.cn</u> -3- 8/28/2006

Thus, 2 power-down control modes are available. The first is to pull the $MCLK_R/PDN$ pin high; the alternative is to hold both FS_X and FS_R input continuously low---the device will power-down approximately 2 ms after the last FS_X or FS_R pulse. Power-up will occur on the first FSx or FS_R pulse. The TRI-STATE PCM data output, Dx, will remain in the high impedance state until the second FSx pulse.

• Synchronous operation

For synchronous operation, the same master clock should be used for both the transmit and receive directions. In this mode , a clock must be applied to MCLKx and the MCLK_R/PDN pin can be used as a power-down control. A low level on MCLK_R/PDN powers up the device and a high level powers down the device. In either case, MCLKx will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLKx and the BCLK_R/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544MHz or 2.048MHz. For 1.544MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BCLKx will be selected as the bit clock for both the transmit and receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL . In this synchronous mode, the bit clock, BCLKx and BCLK_R, may be from 64kHz to 2.048 MHz. The frequency of BCLKx and BCLK_R are not necessary to be equal, but must be synchronous with MCLKx.

Each FSx pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled Dx output on the positive edge of BCLKx. After 8 bit clock periods, the TRI-STATE Dx output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLKx (or BCLKR if running). FSx and FS_R must be synchronous with MCLK_{X/R}.

BCLK _R /CLKSEL	Master Clock Frequency Selected
Clocked	2.048MHz
0	1.536MHz or 1.544MHz
1	2.048MHz

Table Selection of Master Clock Frequencies

• Short frame operation

The device can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, frame sync pulse, FSx and FS_R, must be one bit clock period long, with timing relationships specified in Figure 1. With FSx high during a falling edge of BCLKx, the next rising edge of BCLKx enables the Dx TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the Dx output. With FS_R high during a falling edge of BCLK_x, if BCLK_k is a fixed level), the next falling edge of BCLK_k latches in the sign bit. The following seven falling edge of BCLK_k high during a falling edge of BCLK_k is a fixed level, the next falling edge of BCLK_k high during a falling edge bit. The following seven remaining bits.

Long frame operation

To use the long frame mode, the frame sync pulse, FSx and FS_R, must be three or more bit clock periods long, with timing relationships specified in Figure 2. Based on the transmit frame sync, FSx, the device will sense whether short or long frame sync pulse are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160ns. The Dx tri-state output buffer is enabled with the rising edge of FSx or the rising edge of BCLKx , whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLKx rising edges clock out the remaining seven bits. The Dx output is disabled by the falling BCLKx edge following the eighth rising edge, or by FSx going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_R, will cause the PCM data at D_R to be latched in on the next eight falling edges of BCLKx if BCLKx if BCLK_R is a fixed level).

• Single channel operation

Keeping FS_R input continuously low, the device enters into transmit channel operation, the data at D_R input will be ignored. Keeping FS_X input continuously low, the device enters into receive channel operation. The most part of transmit circuitry ceases to work, D_X and TS_X output will be in high impedance. If MCLK_R input is a clock, it is the internal master clock. If MCLK_R input is not a clock, MCLK_X is the internal master clock, and MCLK_X must be synchronous with FS_R. If BCLK_R input is not a clock, BCLK_X is the internal bit clock. In receive channel operation, the length of FS_R determines whether it is short or long frame.

Switch of operation

See picture below, it is not recommended that the switching from both channels to receive only or switching from receive channel only to transmit channel only.

• Transmit section

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to A-law coding conventions. A built-in bandgap voltage reference is used to provide an input overload of nominally 2.492V peak. The FSx frame pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through Dx at the next FSx pulse. The total encoding delay will be approximately 165us (due to transmit filter) plus 125us (due to encoding delay), which totals 290us. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

Receive section

The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law and the 5th order low pass filter corrects for the sinx/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter/power amplifier capable of driving a 600ohm load to a level of 7.2 dBm. The receive section is unity-gain. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLKx) periods. At the end of the decoder time slot, the decoding cycle begins. The total decoder delay approximately 280 us.

Electrical parameters and timing

Rating	Value	Unit
V _{CC} to GNDA	7	V
V BB to GNDA	-7	V
Voltage at any Analog Input or Output	VCC+0.3 to VBB-0.3	V
Voltage at any Digital Input or Output	VCC+0.3 to GNDA-0.3	°C
Operating Temperature Range	-25 to +125	°C
Storage Temperature Range	-65 to +150	°C
ESD (Human Body Model)	1000	V
Latch-Up Immunity at any Pins	100	mA

Absolute Maximum Ratings

Electrical Characteristics: $V_{CC} = +5.0V\pm5\%$, $V_{BB} = -5.0V\pm5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$. All signals referenced to GNDA. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Digital INTERFACE						
V _{IL}	Input Low Voltage				0.6	V
V _{IH}	Input High Voltage		2.2			V
V _{OL}	Output Low Voltage	Dx, I _L =3.2mA			0.4	V
		TSx, I _L =3.2mA, Open Drain			0.4	V
V _{OH}	Output High Voltage	Dx, I _H = - 3.2mA	2.4			V
I _{IL}	Input Low Current	GNDA≤V _{IN} ≤V _{IL} ,All digital inputs	-10		10	μΑ
I _{IH}	Input High Current	V _{IH} ≤V _{IN} ≤Vcc	-10		10	μΑ
IOZ	Output Current in High	Dx, GNDA≤V ₀≤Vcc	-10		10	μΑ
	Impedance State					
	(TRI-STATE)					

Ananalog Interface with transmit input amplifier						
I _I XA	Input Leakage Current	-2.5V≤V≤+2.5V, VFxI+ or VFxI-	-200		200	nA
R _I XA	Input Resistance	-2.5V≤V≤+2.5V, VFxI+ or VFxI-	10			MΩ
R ₀ XA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω
R _L XA	Load Resistance	GSx	10			kΩ
C _L XA	Load Capacitance	GSx			50	pF
V _O XA	Output Dynamic Range	GSx, $R_L \ge 10k\Omega$	-2.8		2.8	V
A _V XA	Voltage Gain	VFxI+ to GSx	5000			V/V
F _U XA	Unity Gain Bandwidth		1	2		MHz
V _{OS} XA	Offset Voltage		-20		20	mV
V _{CM} XA	Common-Mode Voltage	CMRRXA>60dB	-2.5		2.5	V
CMRRXA	Common-Mode Rejection	DC Test	60			dB
	Ratio					
PSRRXA	Power Supply	DC Test	60			dB
	Rejection Ratio					
ANALOG IN	NTERFACE WITH RECEIV	/E FILTER				
R _o RF	Output Resistance	Pin VF _R O		1	3	Ω
R _L RF	Load Resistance	VF _R O=±2.5V	600			Ω
C _L RF	Load Capacitance				500	pF
VOS _R O	Output DC		-200		200	mV
	Offset Voltage					
POWER DIS	SSIPATION					
I _{CC} 0	Power-Down Current	No Load (Note)		0.14	0.3	mA
$I_{BB}0$	Power-Down Current	No Load(Note)		0.20	1.5	mA
I _{CC} 1	Power-Up Active	No Load		5.0	10	mA
	Current					
I _{BB} 1	Power-Up Active	No Load		5.0	10	mA
	Current					

Note: Icc0 and I $_{BB}0$ are measured after first achieving a power-up state.

Timing Specifications: $V_{CC} = +5.0\pm5\%$, $V_{BB} = -5.0\pm5\%$, $Ta = 0^{\circ}C \sim +70 \circ C$. All signals referenced to GNDA. Typicals specified at $V_{OH} = +5.0V$, $V_{BB} = -5.0V$, $T_{H} = 25^{\circ}C$. All timing parameters are assured at $V_{OH} = 2.0V$ and $V_{OL} = 0.7V$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
$1/t_{PM}$	Frequency of Master Clock	Depends on		1.536		MHz

http://www.belling.com.cn

		BCLK _R /CLKSEL Pin.		1.544		MHz
		MCLKx and MCLK $_{\rm R}$		2.048		MHz
t _{RM}	Rise Time of Master Clock	MCLKx and MCLK _R			50	ns
t _{FM}	Fall Time of Master Clock	MCLKx and MCLK _R			50	ns
t _{PB}	Period of Bit Clock		485	488	15725	ns
t _{RB}	Rise Time of Bit Clock	BCLKx and BCLK _R			50	ns
t _{FB}	Fall Time of Bit Clock	BCLKx and BCLK _R			50	ns
t _{WMH}	Width of Master Clock High	MCLKx and MCLK $_{\rm R}$	160			ns
t _{WML}	Width of Master Clock Low	MCLKx and MCLK $_{\rm R}$	160			ns
t _{SBFM}	Set-Up Time from BCLKx High	First Bit Clock after the	100			ns
	to MCLKx Falling Edge	Leading Edge of FSx				
t _{SFFM}	Set-up Time from FSx High	Long Frame Only	100			ns
	to MCLKx Falling Edge					
$t_{\rm WBH}$	Width of Bit Clock High	VIH=2.2V	160			ns
t _{WBL}	Width of Bit Clock Low	VIL=0.6V	160			ns
t _{HBFL}	Holding Time from Bit Clock	Long Frame Only	0			ns
	Low to Frame Sync					
t _{HBFS}	Holding Time from Bit Clock	Short Frame Only	0			ns
	High to Frame Sync					
t _{SFB}	Set-Up Time from Frame Sync	Long Frame Only	80			ns
	to Bit Clock Low					
t _{DBD}	Delay Time from BCLKx High	Load=150 pF plus	0		140	ns
	to Data Valid	2 LSTTL				
t _{DBTS}	Delay Time to TSx Low	Load=150 pF plus	0		140	ns
		2 LSTTL Loads				
t _{DZC}	Delay Time from BCLKx Low to	CL=0 pF to 150 pF	50		165	ns
	Data Output Disabled					
t_{DZF}	Delay Time to Valid Data from	CL=0 pF to 150 pF	20		165	ns
	FSx or BCLKx, Whichever					
	Comes Later					
t _{SDB}	Set-Up time from D _R Valid to		50			ns
	BCLK _R / _X Low					
t _{HBD}	Hold Time from $BCLK_R/_X$ Low to		50			ns
	D _R Invalid					
t _{SF}	Set-Up Time from $FS_{X/R}$ to	Short Frame Sync Pulse	50			ns

	BCLK _X / _R Low	(1 Bit Clock Period Long)			
t _{HF}	Hold Time from $BCLK_X/_R$ Low to	Short Frame Sync Pulse	100		ns
	$FS_X/_R$ Low	(1 bit Clock Period Long)			
t _{HBFI}	Hold Time from 3rd Period of Bit	Long Frame Sync Pulse	100		ns
	Clock Low to Frame Sync	(from 3 to 8 Bit Clock			
	$(FSx \text{ or } FS_R)$	Periods Long)			
t _{WFL}	Minimum Width of the Frame	64K Bit/s Operating Mode	160		ns
	Sync Pulse (Low Level)				

Timing diagrams

Figure 2. Long Frame Sync Timing

Transmission Characteristics: $V_{CC} = +5.0V\pm5\%$, $V_{BB} = -5.0V\pm5\%$, GNDA=0V, $T_A = 0^{\circ}C$ to +70 °C, f=1.02kHz, Vin=0dBm0, transmit input amplifier connected for unity gain inverting. Typicals are specified at $V_{CC} = +5V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Amplitude resopnse						
	Absolute Levels	Nominal 0 dBm0 Level is				
	(Definition	4 dBm(600Ω) 0 dBm0		1.2276		Vrms
	of Nominal Gain)					
t _{MAX}	Virtual Decision Valve De-	Max Overload Level				
	fined Per CCITT Rec.	(3.14 dBm0)		2.492		V _{PK}
	G711					
G _{XA}	Transmit Gain, Absolute	$T_{A}=25 \ ^{0}C,Vcc=5V,$				
		V_{BB} = -5V Input at				
		Gsx=0 dBm0 at 1020 Hz	-0.25		0.25	dB
G _{XR}	Transmit Gain, Relative to	f=16Hz			-40	dB
	G _{XA}	f=50Hz			-30	dB
		f=60Hz			-26	dB
		f=200Hz	-1.8		-0.1	dB

		f=300Hz-3000Hz	-0.15	0.15	dB
		f=3300Hz	-0.35	0.05	dB
		f=3400Hz	-0.7	0	dB
		f=4000Hz		-14	dB
		f=4600Hz and Up, Measure		-32	dB
		Response from 0 Hz to 4000 Hz			
G _{XAT}	Absolute Transmit Gain	Relative to G _{XA}	-0.1	0.1	dB
	Variation with Tempera-				
	ture				
G _{XAV}	Absolute Transmit Gain	Relative to G _{XA}	-0.05	0.05	dB
	Variation with Supply				
	Voltage				
G _{XRL}	Transmit Gain Variations	Sinusoidal Test Method			
	with Level	Reference Level=-10dBm0			
		VFxI+=-40dBm0 to +3dBm0	-0.2	0.2	dB
		VFxI+=-50dBm0 to-40dBm0	-0.4	0.4	dB
		VFxI+=-55dBm0 to-50dBm0	-1.2	1.2	dB
G _{RA}	Receive Gain, Absolute	$T_{A}=25 \ ^{0}C, Vcc=5V, V_{BB}=-5V$			
		Input=Digital Code Se-			
		quence for 0 dBm0 Signal at	-0.25	0.25	dB
		1020 Hz			
G _{RR}	Receive Gain, Relative to	f=0Hz to 3000 Hz	-0.15	0.15	dB
	G _{RA}	f=3300Hz	-0.35	0.05	dB
		f=3400Hz	-0.7	0	dB
		f=4000Hz		-14	dB
G _{RAT}	Absolute Receive Gain	Relative to G _{RA}	-0.1	0.1	dB
	Variation with Tempera-				
	ture				
G _{RAV}	Absolute Receive Gain	Relative to G _{RA}	-0.05	0.05	dB
	Variation with Supply				
	Voltage				
G _{RRL}	Receive Gain Variations	Sinusoidal Test Method;			
	with Level	Reference Input PCM Code			
		Corresponds to an Ideally			
		Encoded PCM Level			

		=-40 dBm0 to +3 dBm0	-0.2		0.2	dB
		=-50 dBm0 to -40 dBm0	-0.4		0.4	dB
		=-55 dBm0 to -50 dBm0	-1.2		1.2	dB
V _{RO}	Receive Output Drive Level	R _L =600Ω	-2.5		2.5	V
Envelo	pe delay distortion v	vith frequency	1			
D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	us
Dx _R	Transmit Delay, Relative to	f=500 Hz - 600 Hz		195	220	us
	D _{XA}	f=600 Hz - 800 Hz		120	145	us
		f=800 Hz - 1000 Hz		50	75	us
		f=1000 Hz - 1600 Hz		20	40	us
		f=1600 Hz - 2600 Hz		55	75	us
		f=2600 Hz - 2800 Hz		80	105	us
		f=2800 Hz - 3000 Hz		130	155	us
D _{RA}	Receive Delay, Absolute	f=1600 Hz		270	290	us
D _{RR}	Receive Delay, Relative to	f=500 Hz - 1000 Hz	-40	-25		us
	D _{RA}	f=1000 Hz - 1600 Hz	-30	-20		us
		f=1600 Hz - 2600 Hz		70	90	us
		f=2600 Hz - 2800 Hz		100	125	us
		f=2800 Hz - 3000 Hz		145	175	us
Noise	·	-				
N _{XP}	Transmit Noise, P			-74	-67	dBm0p
	Message Weighted					
N _{RP}	Receive Noise, P	PCM Code Equals Positive Zero		-82	-79	dBm0p
	Message Weighted					
N _{RS}	Noise, Single Frequency	f=0kHz to 100 kHz, Loop			-53	dBm0
		Around Measurement,				
		VFxI+=0 Vrms				
PPSRx	Positive Power Supply	VFxI+= -50 dBm0				
	Rejection, Transmit	Vcc=5.0 V _{DC} +100 mVrms				
		f=0 kHz - 50 kHz (Note 2)	40			dBC
NPSRx	Negative Power Supply	VFxl+= -50 dBm0				
	Rejection, Transmit	Vcc=-5.0 V _{DC} +100 mVrms				
		f=0 kHz - 50 kHz (Note 2)	40			dBC
PPSR _R	Positive Power Supply	PCM Code Equals Positive				
	Rejection, Receive	Zero,Vcc=5.0V _{DC} +100mVrms				
		Measure VF _R O				
http://www	v.belling.com.cn	- 12 -			8/28/	2006

		f=0 Hz - 4000 Hz	40		dBC
		f=4 kHz - 25 kHz	40		dB
		f=25 kHz - 50 kHz	36		dB
NPSR _R	Negative Power Supply	PCM code Equals Positive			
	Rejection, Receive	Zero, V _{BB} =-5.0V _{DC} +100mVrms			
		Measure VF _R O			
		f=0 Hz - 4000 Hz	40		dBC
		f=4 kHz - 25 kHz	40		dB
		f=25 kHz - 50 kHz	36		dB
SOS	Spurious Out-of-Band	Loop Around Measurement, 0			
	Signals at the Channel	dBm0, 300 Hz to 3400 Hz Input			
	Output	PCM Code Applied at D _R .			
		4600 Hz - 7600 Hz			
		7600 Hz - 8400 Hz		-30	dB
		8400 Hz - 100,000 Hz		-40	dB
				-30	dB
Distort	ion				
STDx	Signal to Total Distortion	Sinusoidal Test Method			
STD _R	Transmit or Receive	(Note 3)			
	Half-Channel	Level=3.0 dBm0	33		dBC
		=0 dBm0 to - 30	36		dBC
		dBm0	29		dBC
		=-40 dBm0 XMT	30		dBC
			14		dBC
		RCV	15		dBC
		=-55 dBm0 XMT			
		RCV			
SFDx	Single Frequency Distor-			-46	dB
	tion, Transmit				
SFD _R	Single frequency Distor-			-46	dB
	tion,				
	Receive				
IMD	Intermodulation Distortion	Loop Around Measurement,		-41	dB
		VFx+=-4dBm0 to -21 dBm0,			
		Two Frequencies in the			

http://www.belling.com.cn

8/28/2006 Wrote by 2006

		Range 300 Hz-3400Hz						
Crosstalk								
CTx- _R	Transmit to Receive	f=300Hz-3400Hz						
	Crosstalk, 0 dBm0	D _R =Quiet PCM Code		-90	-75	dB		
	Transmit Level	(Note 2)						
CT _R -x	Receive to Transmit	f=300Hz-3400Hz,		-90	-70	dB		
	Crosstalk, 0 dBm0	VFxI=Multitone (Note1)						
	Receive Level							

Note 1: Measured by extrapolation from the distortion test result at -50 dBm0.

Note 2: PPSRx, NPSRx, and CTR-X are measured with a -50 dBm0 activation signal applied to VFxl+ .

Note 3: Device is measured using psophometric-weighted filter.

Encoding Format at Dx Output

Vin (at GSx) = +Full-Scale	1	0	1	0	1
	0	1	0		
Vin (at GSx) = 0V	1	1	0	1	0
	1	0	1		
	0	1	0	1	0
	1	0	1		
Vin (at GSx) = -Full-Scale	0	0	1	0	1
	0	1	0		

Applications Information

Power supplies

While the pins of the device are well protected against electrical misuse, it is recommended that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μ F supply decoupling capacitors should be connected from this common ground point to Vcc and V_{BB}, as close to the device as possible.

For best performance, the ground point of each CODEC/FILTER on a card should be connected to a common card ground in star formation, rather than via a ground bus.

This common ground point should be decoupled to Vcc and V_{BB} with $10\mu F$ capacitors.

Receive gain adjustment

For applications where a device CODEC/filter receive output must drive a 600 Ω load, but a peak swing lower than ±2.5V is required, the receive gain can be easily adjusted by inserting a matched T-pad or π -pad at the output. The followed table lists the required resistor values for 600 Ω terminations. As these are generally non-standard values, the equations can be used to compute the attenuation of the closest practical set of resistors. It may be necessary to use unequal values for the R1 or R4 arms of the attenuators to achieve a precise attenuation. Generally it is tolerable to allow a small deviation of the input impedance from nominal while still maintaining a good return loss.

Attenuator diagram and table

T-Pad attenuator

 π - Pad attenuator

Where

http://www.belling.com.cn

Attenuator Table for $Z_1=Z_2=300W$, all values in W									
dB	R ₁	R ₂	R ₃	R_4	dB	R ₁	R ₂	R ₃	R ₄
0.1	1.7	26k	3.5	52k	6	100	402	224	900
0.2	3.5	13k	6.9	26k	7	115	380	269	785
0.3	5.2	8.7k	10.4	17.4k	8	379	284	317	698
0.4	6.9	6.5k	13.8	13k	9	143	244	370	630
0.5	8.5	5.2k	17.3	10.5k	10	156	211	427	527
0.6	10.4	4.4k	21.3	8.7k	11	168	184	490	535
0.7	12.1	3.7k	24.2	7.5k	12	180	161	550	500
0.8	13.8	3.3k	27.7	6.5k	13	190	142	635	473
0.9	15.5	2.9k	31.1	5.8k	14	200	125	720	450
1.0	17.3	2.6k	34.6	5.2k	15	210	110	816	430
2	34.4	1.3k	70	2.6k	16	218	98	924	413
3	51.3	850	107	1.8k	18	233	77	1.17k	386
4	68	650	144	1.3k	20	246	61	1.5k	366
5	84	494	183	1.1k					

Typical synchronous application

Print Information

Physical Dimensions inches (millimeters)

