BL6810 低压电力线载波 SoC 芯片

1. 功能概述

贝岭公司研发的 BL6810 是一款基于电力线网络的调制解调通讯 SoC 芯片,调制方式为 BPSK/DSSS; 具有多频点、多速率的特点; 支持信号的自适应接收; 内嵌 MCU 核,支持网络协议; 兼容 EIA709.2 和 DL/T-645。 可应用于低压电力线载波远程自动抄表(AMR),智能家居控制,远程路灯监控,工业控制等应用中。功能框图如下:

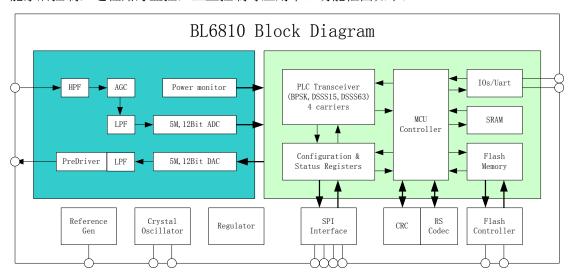
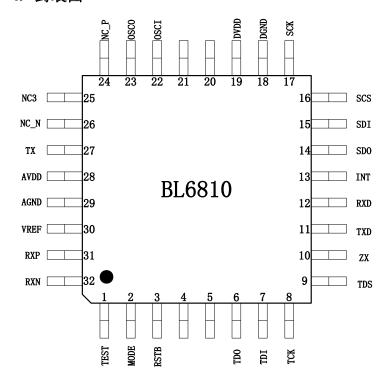


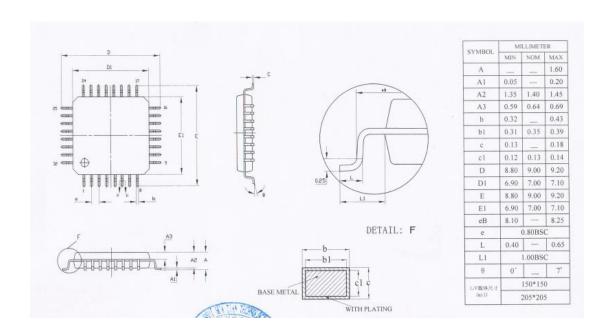
图 1、BL6810 的基本框图

2. 主要特点

- 全集成的电力线载波通讯 SoC 芯片
- 全集成的模拟前端:
 - 12bit ADC 和 DAC (采样频率位 5MHz)
 - 片内集成模拟高性能的高通和低通滤波器
 - 66dB 增益可调的低噪声自动增益控制模块
 - ◆ 输入灵敏度 5uV
 - 高性能发射器
- 高性能嵌入式 DSP, 特点包括:
 - 4个子载波: 131.58k/263.16k/312.5k/416.67kHz
 - BPSK, DSSS-15, DSSS-63 可编程调制
 - 三种通讯速率: 5.48kbps/783bps(15 DSSS)/87bps(63 DSSS)
 - 自适应接收技术和冗余发送技术
 - 支持过零点传输
 - RS 纠错编解码和支持 CRC16 校验
 - 全兼容 EIA709.2 和 DL/T-645
- 片上集成嵌入式 MCU 核

- 高性能 MCU 核
- 4k 字节 SRAM
- 28k 字节 Flash 存储器
- 片上外设:
 - 主机控制器 UART 接口--- SoC 模式
 - SPI 外部控制接口--- Device 模式
 - 高速 flash 存储器接口,用于程序代码的烧入
 - 看门狗定时器
- 5V 单电源供电, 片内集成 1.8V 的线性稳压器为数字核心电路供电
- 芯片工作温度范围: -40°C~85°C
- LQFP32 封装


3. 管脚说明


引脚	引脚名称	引脚	引脚说明
编号		类型	
1	Test	I	Testing mode: 1 for test mode, 0 for normal operation
			This pin has internal pull down resistor (53kOhms)
2	Mode	I	0: device mode, 1: SoC mode
3	Rstb	I	Pin reset, active low
6	TDO	О	SoC mode: Flash programming interface
			Device mode: not used
7	TDI	Ю	Open-drain output, it needs 4.7kOhms pull-up resistor.
			SoC mode: Flash programming interface
			Device mode: not used
8	TCK	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			SoC mode: Flash programming interface
			Device mode: not used
9	TDS	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			SoC mode: Flash programming interface,复用 P37
			Device mode: not used
10	ZX	Ю	Open-drain output, it needs 4.7kOhms pull-up resistor.
			Zero crossing input
11	TXD	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			UART Output,复用 P31
12	RXD	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			UART Input,复用 P30
13	INT	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			Device mode: Interrupt, active low
			SoC: not used, P36
14	SDO	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			Device mode: SPI interface;
			SoC mode: P35
15	SDI	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.

	T		
			Device mode: SPI interface;
			SoC mode: P34
16	SCS	IO	Open-drain output, it needs 4.7kOhms pull-up resistor.
			Device mode: SPI interface;
			SoC mode: P33
17	SCK	Ю	Open-drain output, it needs 4.7kOhms pull-up resistor.
			Device mode: SPI interface;
			SoC mode: P32
18	DGND	IO	Digital ground
19	DVDD	IO	Digital power supplier
22	OSCI	I	Crystal input
23	OSCO	0	Crystal output
24	NC_P	IO	Not connected
25	NC3	IO	Not connected
26	NC_N	IO	Not connected
27	TX	О	Signal output
28	AVDD	IO	Analog power supplier
29	AGND	IO	Analog ground
30	VREF	IO	Voltage reference, 外接 120k 欧姆电阻到地用来提
			供内部电路所需的偏置电流
31	RXP	I	Signal input(差分正端)
32	RXN	I	Signal input(差分副端)

Note: pad4,5,20,21 not used.

4. 封装图

5. 性能指标

5.1 最大额定值

符号	参数说明	数值	单位
VDD	电源电压	-0.3 [~] 6.0	V
Vpin	管脚电压	Vss−0.3 ~ Vdd+0.3	V
Tstg	存储温度	−55 [~] 150	° C

5.2 直流电气参数及定义

参数		规格			单位
		Min.	Тур.	Max.	
电源电压	V_{DD}	4.5	5	5.5	V
工作频率	F			20	MHz
工作温度	T_{A}	-40		+85	°C
工作电流	I		40		mA

符号	参数说明	条件		参数值		
			最小值	典型值	最大值	
VDD	工作电压		4.5	5	5. 5	V
IDD	工作电流			40		mA
VIL	输入低电平		VSS		0.3VDD	V
VIH	输入高电平		0. 7VDD		VDD	V
IIL	输入漏电流	VIL=0V			5	uA

	IIH	输入高漏电	VIH=5.0V		5	uА
			Pullup			
	VOL	输出低电平	1K 欧姆		1V	V
Ī			Pullup			
	VOH	输出高电平	1K 欧姆	VDD-1V		V

note: 管脚 1 (test) 上有下拉电阻,输入高漏电最大有 150uA; 管脚 6 (TDO) 是正常的输出管脚,其它的都是 open-drain 输出管脚。

5.3 工作参数

符号	参数说明	条件		参数值	<u>i</u>	单位
			最小值	典型值	最大值	
	接收带通滤波	频谱分析仪				
BWbpf	器带宽	扫频		110 [~] 550		KHz
VINmin	输入灵敏度	差分输入			5	uV
VINmax	最大输入幅度	差分输入			400	mV
	自动增益控制					
AGC_range	范围		0		66	dB
	自动增益最小					
AGC_step	Step			2.2		dB
Voffs_RX_in	输入 offset	AGC = 66dB			0. 1	mV
Voffs_RX_in	输入 offset	AGC = 0dB			20	mV
Voutmax	输出幅度	Rload=1MOhms		± 1.5		V
		Fc=131.58kHz				
		263. 16kHz				
HD2	二次谐波	312.5kHz			40	dB
		416.67kHz				
		Fc=131. 58kHz				
		263. 16kHz				
HD3	三次谐波	312.5kHz			40	dB
		416.67kHz				
CLTX_OUT	输出容性负载				400	pF
RLTX_OUT	输出阻性负载			200		Ohms
				131. 58		
				263. 16		
Fc	载波频率			312.5		KHz
				416.67		
		BPSK		5. 48K		
DataRate	数据速率	DS15		783		bps
		DS63		87		

6. MCU 说明

BL6810 中采用的是增强型 8051 (参考 Verisilicon datasheet)。

7. 通信模块说明

由图 2 所示,BL6810 信号通路上的主要模拟模块包括高通滤波器(HPF),可变增益放大器(VGA),低通滤波器(LPF),模数转换器(ADC),数模转换器(DAC),输出低通滤波器(TX-LPF)和 Class A B 输出驱动电路。RX 部分: HPF 用于滤除 100KHz 以下的低频信号,VGA 提供 0~66dB 的电压增益,LPF 是抗混叠滤波器,ADC 将模拟信号量化为 12bit 供 DIGITAL 模块处理; TX 部分: 数字发送模块提供的 12bit 数字信号经过 DAC 转换为模拟信号,送到输出低通滤波器滤波后,由 Class AB 输出驱动电路将载波信号输出到片外。

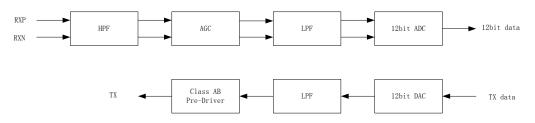


图2、BL6810模拟前端

如图 3 所示,A D C输出的 1 2 位数字信号首先经过高性能带通滤波器滤除带外噪声后,进行信号降采样,降采样后的信号及其 9 0 度移相信号送入 c o s t a s 环进行环路锁定,锁定后的信号经过内插和匹配滤波器的处理后送入 f r a m e l o c k 模块提取接收信号。最后把接收到的信号送入M C U进行处理。发送信号相对比较简单,M C U 把需要发送的数据写入通信发送模块,然后把数据加载到载波上,经过成型滤波器后把信号送入模拟前端的 D A C 中,经过 L P F 和 P r e - d r i v e r 输出到片外。

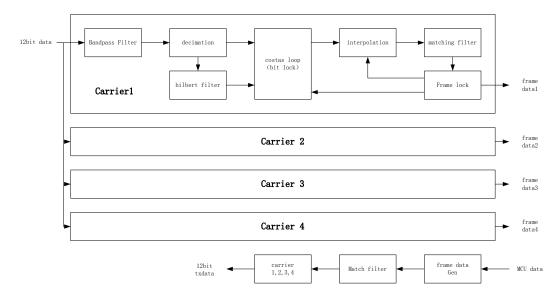
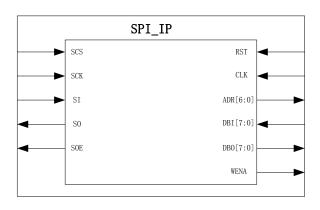
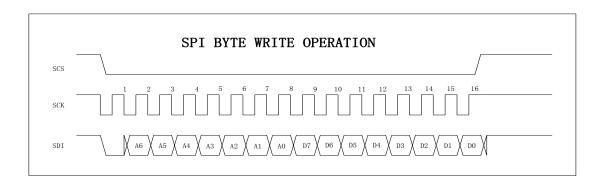
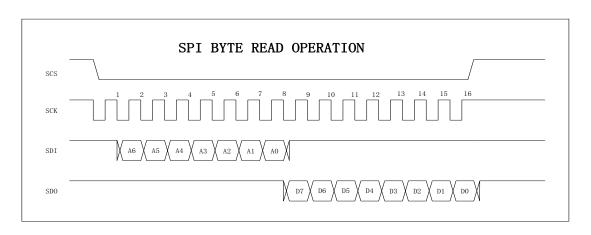



图3、BL6810通信接收模块

8. SPI 接口设计

串行外围设备接口(SPI)是摩托罗拉开发的四线串行通信协议,SPI协议是以主从方式工作的,这种模式通常有一个主设备和一个或多个从设备,下图为设备的 SPI接口示意图。该接口在工作时,主设备通过提供移位时钟和从使能信号来控制信息的流动。从使能信号是一个可选的高低电平,它可以激活从设备(在没有时钟提供的情况下)的串行输入和输出。在没有专门的从使能信号的情况下,主从设备之间的通信则由移位时钟的有无来决定,在这种连接方式下,从设备必须自始至终保持激活状态,而且从设备只能是一个,不能为多个。


端口描述:



端口名 输入/	位宽	同/异步	功能描述
---------	----	------	------

	出			
RST	IN	1	异步	内部系统复位信号
CLK	IN	1	同步	主时钟 (10MHz)
ADR	OUT	7	同步	外部可访问寄存器组的地址总线输
				入
DBI	IN	8	同步	外部可访问寄存器组的数据总线输
				出
DB0	OUT	8	同步	外部可访问寄存器组的数据总线输
				入
WENA	OUT	1	同步	外部可访问寄存器组的同步写使能
SCS	IN	1	异步	SPI 片选输入
SCK	IN	1	异步	SPI 串行时钟输入
SI	IN	1	异步	SPI 串行数据输入
S0	OUT	1	同步	SPI 串行数据输出
S0E	OUT	1	同步	SPI 串行数据输出使能控制

逻辑功能描述:

9. 寄存器说明

在SoC模式下,MCU通过访问SFR地址中的0xd9和0xd8来访问与通信相关的寄存器。0xd9中存储的是通信寄存器空间的地址;0xd8中存储的是通信寄存器空间读出或写入的数据。另外通信寄存器空间有写保护,在进行写操作前,应先往0xd9中写入0xff,0xd8中也写入0xff,这样就可以解除寄存器的写保护。发送数据时,MCU需要向0xda中写入需要发送的数据。在Device模式下,发送数据写入通信寄存器0x13地址中。

9.1 芯片版本号

寄存器名称	地址	初始值	类型	描述
Version ID	0x00	0xa1	RO	芯片版本号

9.2 电力线周期值

寄存器名称	地址	初始值	类型	描述
Line period	0x02	0x00	RO	电力线信号的一个周期的时间, 0.1ms/LSB

9.3 自动增益控制

寄存器名称	地址	初始值	类型	描述
AGC_CTR	0x09	0x00	RW	[7]:自动/手动控制,1:手动控制,0: 自动控制 [4:0]: AGC 增益; 1LSB 代表 2dB

9.4 发送控制

寄存器名称	地址	初始值	类型	描述
XT_CTRL	0x10	0x00	RW	[7]:发送/接收,"1"为发送 [6:3]:reserved [2]:Power down DAC [1]:过零点发送 [0]:火线更新发送

9.5 发送载波/速率选择

寄存器名称	地址	初始值	类型	描述
XT_SEL	0x11	0x10	RW	[7:4]:载波选择 [4]:131.58kHz [5]:263.16kHz [6]:312.50kHz [7]:416.67kHz

[6:3]:reserved
[1:0]:速率选择
00:5.48Kbps, BPSK
01:783bps, DSSS15
10:87bps, DSSS63
11:reserved

9.6 发送幅度控制

寄存器名称	地址	初始值	类型	描述
XT_AMP	0x12	0x80	RW	0x00~0xff 0x00 最小 0xff 最大

9.7 发送数据

寄存器名称	地址	初始值	类型	描述
XT_DATA	0x13	0x00	RW	Device 模式下,发送数据写入此寄存器

9.8 发送状态寄存器

寄存器名称	地址	初始值	类型	描述
XT_STATUS	0x14	0x00	RW	[7]: 发送结束 [6:3]:reserved [2]:发送成功 [1]:发送超时 [0]:发送数据缓存空

9.9 接收状态

寄存器名称	地址	初始值	类型	描述
Rec_Status	0x25	0x00	RO	[7]:reserved [6]:接收到 DSSS63 扩频信号 [5]:接收到 DSSS15 扩频信号 [4]:接收到 BPSK 信号 [3]:接收到载波 4 的中断 [2]:接收到载波 3 的中断 [1]:接收到载波 2 的中断 [0]:接收到载波 1 的中断

9.10载波 1 的 frame 相位

寄存器名称	地址	初始值	类型	描述
FPHASE_Carrier1	0x26	0x00	RO	载波 1 的 frame 相位

9.11载波1的中断状态信息

寄存器名称	地址	初始值	类型	描述
INTMSG_Carrier1	0x27	0x00	RO	[7]:过零点接收时,接收到帧头信号 [6]:火线更新时,接收到帧头信号 [5]:信号帧尾接收失效 [4]:信号帧头接收失败 [3]:信号帧尾接收成功 [2]:数据接收中 [1]:检测到帧头信号 [0]:检测到载波信号

9.12载波 1 的接收数据

寄存器名称	地址	初始值	类型	描述
DATA_Carrier1	0x28	0x00	RO	载波1接收到的数据

9.13载波 1 接收到的奇偶校验位

寄存器名称	地址	初始值	类型	描述
Parity_Carrier1	0x29	0x00	RO	载波 1 接收到的奇偶校验位 [7:3]:Reserved [2]:奇偶校验位 [1:0]:2'b01(如果接收正确)

9.14载波 2 的 frame 相位

寄存器名称	地址	初始值	类型	描述
FPHASE_Carrier2	0x2a	0x00	RO	载波 2 的 frame 相位

9.15载波 2 的中断状态信息

寄存器名称	地址	初始值	类型	描述
INTMSG_Carrier2	0x2b	0x00	RO	[7]:过零点接收时,接收到帧头信号 [6]:火线更新时,接收到帧头信号 [5]:信号帧尾接收失效 [4]:信号帧头接收失败 [3]:信号帧尾接收成功 [2]:数据接收中 [1]:检测到帧头信号 [0]:检测到载波信号

9.16载波 2 的接收数据

寄存器名称	地址	初始值	类型	描述
DATA_Carrier2	0x2c	0x00	RO	载波2接收到的数据

9.17载波 2 接收到的奇偶校验位

寄存器名称	地址	初始值	类型	描述
1			/	1H.C

Parity_Carrier2	0x2d	0x00	RO	载波 2 接收到的奇偶校验位 [7:3]:Reserved [2]:奇偶校验位 [1:0]:2'b01(如果接收正确)
-----------------	------	------	----	--

9.18载波 3 的 frame 相位

寄存器名称	地址	初始值	类型	描述
FPHASE_Carrier3	0x2e	0x00	RO	载波 3 的 frame 相位

9.19载波 3 的中断状态信息

寄存器名称	地址	初始值	类型	描述
INTMSG_Carrier3	0x2f	0x00	RO	[7]:过零点接收时,接收到帧头信号 [6]:火线更新时,接收到帧头信号 [5]:信号帧尾接收失效 [4]:信号帧头接收失败 [3]:信号帧尾接收成功 [2]:数据接收中 [1]:检测到帧头信号 [0]:检测到载波信号

9.20载波 2 的接收数据

寄存器名称	地址	初始值	类型	描述
DATA_Carrier3	0x30	0x00	RO	载波3接收到的数据

9.21载波 3 接收到的奇偶校验位

寄存器名称	地址	初始值	类型	描述
Parity_Carrier3	0x31	0x00	RO	载波 3 接收到的奇偶校验位 [7:3]:Reserved [2]:奇偶校验位 [1:0]:2'b01(如果接收正确)

9.22载波 4 的 frame 相位

寄存器名称	地址	初始值	类型	描述
FPHASE_Carrier4	0x32	0x00	RO	载波 4 的 frame 相位

9.23载波 4 的中断状态信息

寄存器名称	地址	初始值	类型	描述
INTMSG_Carrier4	0x33	0x00	RO	[7]:过零点接收时,接收到帧头信号 [6]:火线更新时,接收到帧头信号 [5]:信号帧尾接收失效 [4]:信号帧头接收失败 [3]:信号帧尾接收成功 [2]:数据接收中

	[1	1]:检测到帧头信号
	[0	0]:检测到载波信号

9.24载波 4 的接收数据

寄存器名称	地址	初始值	类型	描述
DATA_Carrier4	0x34	0x00	RO	载波4接收到的数据

9.25载波 4 接收到的奇偶校验位

寄存器名称	地址	初始值	类型	描述
Parity_Carrier2	0x35	0x00	RO	载波 4 接收到的奇偶校验位 [7:3]:Reserved [2]:奇偶校验位 [1:0]:2'b01(如果接收正确)

9.26接收状态及载波接收屏蔽

寄存器名称	地址	初始值	类型	描述
STATUS_MASK_Carrier	0x36	0x00	RW	[7]: 载波 4 接收中 [6]: 载波 3 接收中 [5]: 载波 2 接收中 [4]: 载波 1 接收中 [3]: 屏蔽载波 4 接收 [2]: 屏蔽载波 3 接收 [1]: 屏蔽载波 2 接收 [0]: 屏蔽载波 1 接收

9.27火线更新接收状态

寄存器名称	地址	初始值	类型	描述
FRec_Status	0x37	0x00	RO	[7]:reserved [6]:接收到 DSSS63 扩频信号 [5]:接收到 DSSS15 扩频信号 [4]:接收到 BPSK 信号 [3]:接收到载波 4 的中断 [2]:接收到载波 3 的中断 [1]:接收到载波 2 的中断 [0]:接收到载波 1 的中断

9.28接收信号信噪比计算控制状态寄存器

寄存器名称	地址	初始值	类型	描述
SNRCAL_CTRL_STATUS	0x40	0x00	RW	[7]:reserved [5:4]:信噪比输出载波选择 00: 载波 1 01: 载波 2 10: 载波 3

11: 载波 4
[3:0]:信噪比计算结束指示
[3]:载波 4 信噪比计算结束
[2]:载波3信噪比计算结束
[1]:载波2信噪比计算结束
[0]:载波1信噪比计算结束

9.29接收信号能量

寄存器名称	地址	初始值	类型	描述
POS[15:8]	0x41	0x00	RO	信号能量
POS[7:0]	0x42	0x00	RO	信号能量

9.30接收噪声能量

寄存器名称	地址	初始值	类型	描述
PON[15:8]	0x43	0x00	RO	信号能量
PON[7:0]	0x44	0x00	RO	信号能量

9.31CRC 初始化寄存器

寄存器名称	地址	初始值	类型	描述
CRC_INIT	0x45	0x00	RW	[7:1]:reserved [0]:为高时,CRC 模块初始化

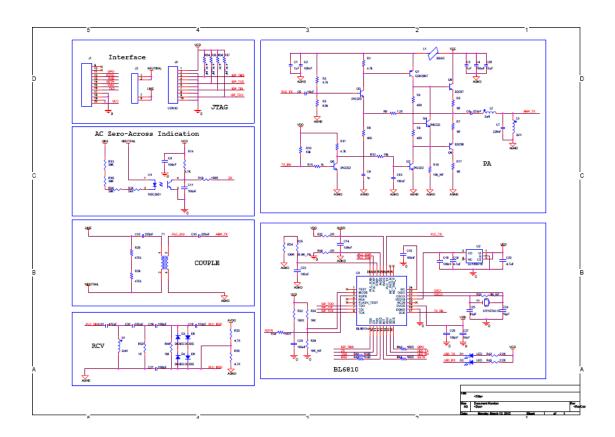
9.32CRC 模块输入数据

寄存器名称	地址	初始值	类型	描述
CRC_DATAIN	0x46	0x00	RW	9.33CRC 模块输入数据

9.34CRC 结果寄存器

寄存器名称	地址	初始值	类型	描述
CRC_VALUE[15:8]	0x47	0x00	RO	CRC 结果
CRC_VALUE [7:0]	0x48	0x00	RO	CRC 结果

9.35RS 数据编解码寄存器


寄存器名称	地址	初始值	类型	描述
RSDATA[0]	0x4a	0x00	RW	RS 编码中所需的原始数据
RSDATA[1]	0x4b	0x00	RW	RS 编码中所需的原始数据
RSDATA[2]	0x4c	0x00	RW	RS 编码中所需的原始数据
RSDATA[3]	0x4d	0x00	RW	RS 编码中所需的原始数据
RSDATA[4]	0x4e	0x00	RW	RS 编码中所需的原始数据
RSDATA[5]	0x4f	0x00	RW	RS 编码中所需的原始数据
RSDATA[6]	0x50	0x00	RW	RS 编码中所需的原始数据
RSDATA[7]	0x51	0x00	RW	RS 编码中所需的原始数据
RSDATA[8]	0x52	0x00	RW	RS 编码中所需的原始数据
RSDATA[9]	0x53	0x00	RW	RS 编码中所需的原始数据

RSDATA[10]	0x54	0x00	RW	RS 编码中产生的编码数据
RSDATA[11]	0x55	0x00	RW	RS 编码中产生的编码数据
RSDATA[12]	0x56	0x00	RW	RS 编码中产生的编码数据
RSDATA[13]	0x57	0x00	RW	RS 编码中产生的编码数据
RSDATA[14]	0x58	0x00	RW	RS 编码中产生的编码数据
RSDATA[15]	0x59	0x00	RW	RS 编码中产生的编码数据
RSDATA[16]	0x5a	0x00	RW	RS 编码中产生的编码数据
RSDATA[17]	0x5b	0x00	RW	RS 编码中产生的编码数据
RSDATA[18]	0x5c	0x00	RW	RS 编码中产生的编码数据
RSDATA[19]	0x5d	0x00	RW	RS 编码中产生的编码数据

9.36RS 编解码控制寄存器

寄存器名称	地址	初始值	类型	描述
RS_CTRL	0x5e	0x00	RW	[7]:RS 缓冲器清零 [6]:编码使能 [5]:解码使能 [4]:编码结束指示 [3]:解码结束指示 [2]:解码错误指示 [1:0]:reserved

10. 应用线路图

