

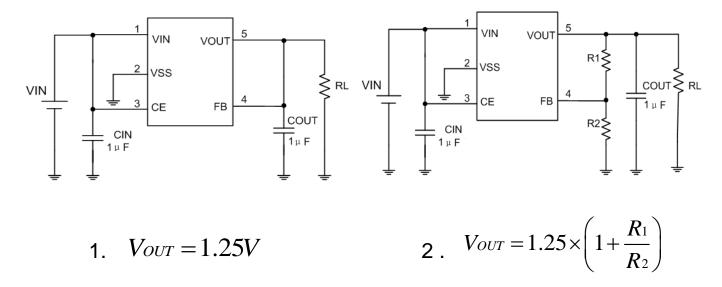
400mA Output Voltage Adjustable High Speed LDO Regulators ME6221 Series

General Description

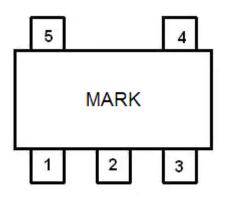
The ME6221 series are highly accurate, low noise, LDO Voltage Regulators .The output voltage can be set via the external resistor. On chip trimming adjusts the reference/output voltage to within $\pm 2\%$ accuracy. Internal protection features consist of output current limiting, safe operating area compensation, and thermal shutdown. The current limiter's feedback circuit also operates as a short protect for the output current limiter and the output pin. The CE function allows the output of regulator to be turned off, resulting in greatly reduced power consumption. The ME6221 series can operate with up to 18V input.

Selection Guide

Features


- Maximum Output Current: 400mA
- Voltage Setting via External Resistor:1.25V~8V
- Dropout Voltage:125mV@ I_{OUT} =100mA (Vout=3.3V)
- Operating Voltage Range: 2.8V~18V
- Highly Accuracy: ±2%
- Standby Current: 45uA (TYP.)
- Line Regulation: 30mV (TYP.)
- Temperature Stability << 0.5%
- Thermal Shutdown Protection: 165°C
- Packages:SOT23-5

Typical Application

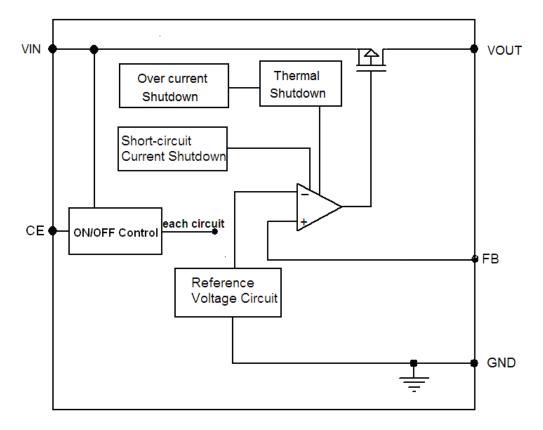

- Consumer and Industrial Equipment Point of Regulation
- Switching Power Supply Post Regulation
- Hard Drive Controllers
- Battery Chargers

Typical Application Circuit

Pin Configuration

Pin Assignment

ME6221C


Pin Number	Pin Name	Functions	
SOT23-5	Pin Name	Functions	
1	V _{IN}	Power Input	
2	V _{SS}	Ground	
3	CE	ON / OFF Control	
4	FB	Adjust Output	
5	V _{OUT}	Output	

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltag	е	V _{IN}	18	V
Output Curre	nt	I _{OUT}	500	mA
Output Volta	ge	V _{OUT}	Vss-0.3 \sim V _{IN} +0.3	V
CE Pin Volta	ge	V _{CE}	Vss-0.3 \sim V _{IN} +0.3	V
FB Pin Volta	ge	V_{FB}	Vss-0.3 \sim V _{IN} +0.3	V
Power Dissipation	SOT23-5	P _D	300	mW
Operating Temperatu	ire Range	T _{OPR}	$-40 {\sim} {+}125$	°C
Storage Temperature Range		T _{STG}	$-40 {\sim} {+}150$	°C
Lead Temperature			260℃, 4sec	

Block Diagram

Electrical Characteristics ME6221C

 $(V_{\text{IN}} = \text{Vout+1}, V_{\text{CE}} = V_{\text{IN}}, V_{\text{OUT}} = V_{\text{FB}}, C_{\text{IN}} = C_{\text{OUT}} = 1 \text{uF}, \text{Ta} = 25^{\circ}\text{C}, \text{ unless otherwise noted})$

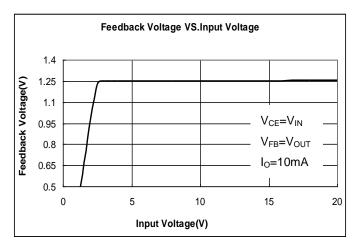
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =30mA,	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Output Voltage Range	V _{ROUT}	$V_{IN} = V_{OUT}(T) + 1V, V_{CE} = V_{IN}$ Using test circuit 2	1.25		8	V
Maximum Output Current	I _{OUTMAX}	$V_{\text{IN}}\text{=} V_{\text{OUT}}\text{+}1V~(\text{Note1})$		400	550	mA
Load Regulation	ΔV_{OUT}	1mA≤I _{OUT} ≤100mA		4	10	mV
Dropout Voltage	V_{DIF1}	I _{OUT} =100mA		125	140	mV
(Note 1)	V_{DIF2}	I _{OUT} =200mA		250	270	mV
Supply Current	I _{SS}	V_{IN} = 3V, V_{CE} = V_{IN}		45	60	μA
Stand-by Current	I _{CEL}	$V_{IN}=3V, V_{CE}=0V$		0	1	μA
Line Regulation (Note 1)	ΔV_{OUT}	I _{OUT} =30mA Vout+1V ≤V _{IN} ≤18V		4	15	mV
CE "High" Voltage	VCEH	RL=1.0KΩ	1.3		18	V
CE "Low" Voltage	VCEL	RL=1.0KΩ	0		0.7	V
CE "High" Current	ISH	VCE=7V	-0.1		0.1	μA
CE "Low" Current	ISL	VCE=0V	-0.1		0.1	μA
Short-circuit Current	I _{SHORT}	V _{OUT} =0V		70		mA
Thermal Shutdown Protection	T_{sd}	I _{OUT} =1mA,		165		°C
Over Current Protection	l _{limit}			600		mA

Note :

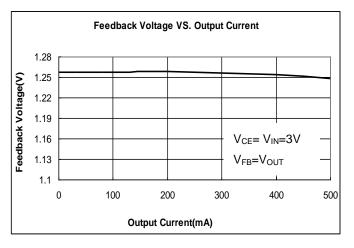
1. V_{OUT} (T) : Output Voltage less than 1.8V, the input Voltage should be 2.8V at least, and the others fulfil the rule of Vin=Vout+1.

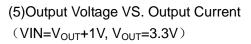
2.V_{OUT} (E) : Effective Output Voltage (le. The output voltage when "V_{OUT} (T)+1.0V" is provided at the Vin pin while maintaining a certain I_{OUT} value.)

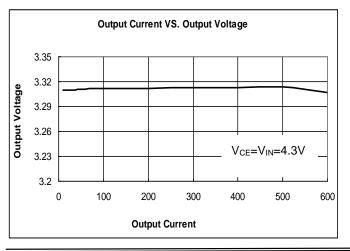
 $3.V_{\text{DIF}}: \ V_{\text{IN1}} - V_{\text{OUT}} \ (\text{E})'$

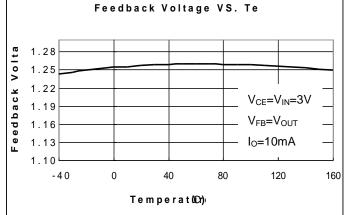

 $V_{\text{IN1}}\,$: The input voltage when $V_{\text{OUT}}(E)$ appears as input voltage is gradually decreased.

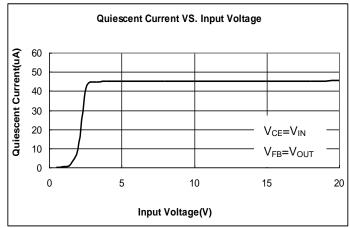
 V_{OUT} (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} (V_{OUT} (T)+1.0V} is input.




Type Characteristics

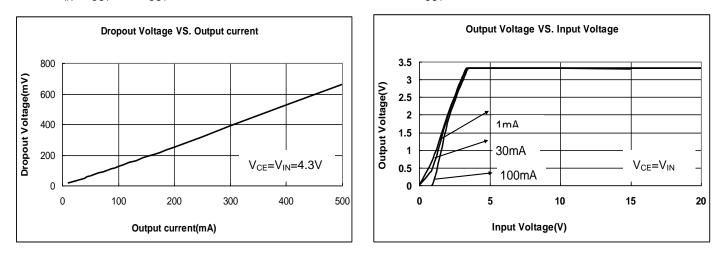

(1) Feedback Voltage VS. Input Voltage


(3) Feedback Voltage VS. Output Current



(2) Feedback Voltage VS. Temperature

(4) Quiescent Current VS. Input Voltage


(6) Output Voltage VS. Temperature (VIN=V_{OUT}+1V, V_{OUT}=3.3V, I_{OUT}=10mA)

(7)Dropout Voltage VS. Output Current $(V_{IN}=V_{OUT}+1V, V_{OUT}=3.3V)$

(8) Output Voltage VS. Input Voltage $(V_{OUT}=3.3V)$

Applications Information

1. Setting the Output Voltage

ME6221 series output voltage can be set via a external resistor. AS the internal reference is 1.25V (Typical), the external voltage can optionally set between 1.25V and 8.2V by connecting a extra resistor between the Vout and V_{FB} pins and a resistor between the V_{FB} and V_{SS} pins.

The output voltage is calculated as below:

$$V_{OUT} = 1.25 \times \left(1 + \frac{R_1}{R_2}\right)$$

V ₀ (V)	R1 (KΩ)	R2 (KΩ)
1.8	53	120
2.5	120	120
3.0	168	120
3.3	197	120
3.6	225	120
5.0	360	120

 Table 1: Resistor selection for output voltage setting (e.g.)

Caution: The value of R2 is more than 100K in the best.

2. Input Bypass Capacitor

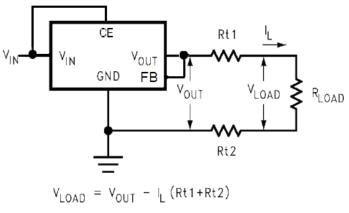
An input capacitor is recommended. A 1uFor more tantalum on the input is a suitable input bypassing for almost all applications.

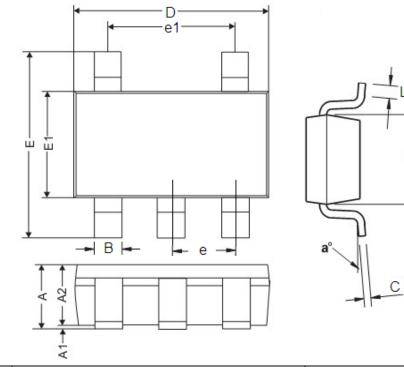
3. Output Capacitor

The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The output capacitance required by the ME6221 is 2.2μ F or more, If a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should be less than 1Ω .

4. Load Regulation

The ME6221 regulates the voltage that appears between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed. Figure 1, shows a typical application. The Rt1 and Rt2 are the line resistances. It is obvious that the V_{LOAD} is less than the V_{OUT} by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the R_{LOAD} would be degraded from the datasheet specification. To improve this, the load should be tied directly to the output terminal on the positive side and directly tied to the ground terminal on the negative side.




Figure 1. Typical Application

E1

● SOT23-5 Unit: mm(

Unit: mm (inch)

DIM	Millimeters		Inches		
	Min	Мах	Min	Max	
A	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95REF		0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30 ⁰	0 ⁰	30 ⁰	

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.