

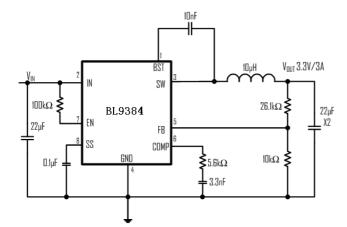
BL9384

3A, 18V High Efficiency Synchronous Step-Down Converter

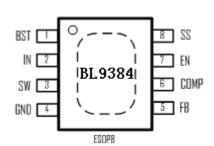
DESCRIPTION

The BL9384 is a wide input range, highefficiency, DC-to-DC step-down switching regulator, capable of delivering up to 3A of output current. Current mode PWM control allows the use of small external components, such as ceramic input and output caps, as well as small inductors, while still providing low output ripples. On top of the integrated internal synchronous rectifier that eliminates external Schottky diode, Overall BL9384 is a highly efficient and robust solution for DC-DC step-down applications that requires wide input ranges.

BL9384 is available ESOP8 Packages.


TYPICAL APPLICATION

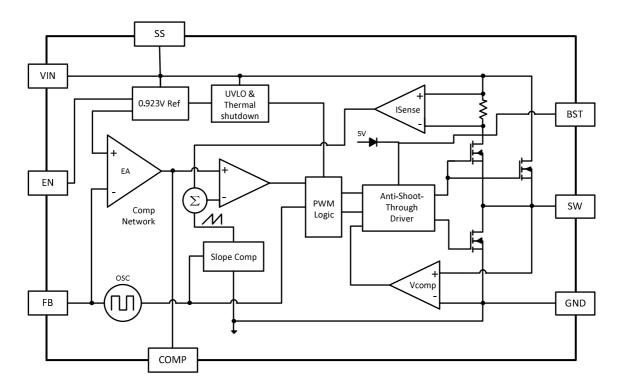
FEATURES


- Wide Input Operating Range from 4.5V to 18V
- Capable of Delivering 3A
- No External Schottky Diode Needed
- Current Mode control
- 0.923V Reference for Low Output voltages
- Logic Control Shutdown
- Thermal shutdown and UVLO
- Available in ESOP8 Package

APPLICATIONS

- LCD TVs
- Notebook computers
- FPGA power supplies
- LED drivers

PIN OUT


MARK and ORDERING INFORMATION

Mark Explanation	
XX: Year YY: Week ZZ: Internal code	BL9384 _O XXYY ZZ

PINOUT DESCRIPTION

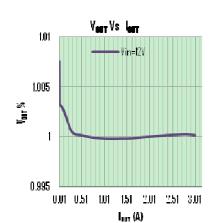
PIN #	NAME	DESCRIPTION
1	BST	Bootstrap pin. Connect a 10nF capacitor from this pin to SW
2	IN	Supply Voltage. Bypass with a $22\mu F$ ceramic capacitor to GND
3	SW	Inductor Connection. Connect an inductor Between SW and the regulator output.
4	GND	Ground
5	FB	Feedback Input. Connect an external resistor divider from the output to FB and GND to set VOUT
6	COMP	Regulator Compensation. Connect series RC network to GND.
7	EN	Enable pin for the IC. Drive this pin to high to enable the part, low to disable.
8	SS	Soft start pin. Connect a 0.1 uF capacitor from this pin to GND

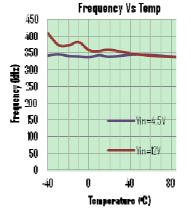
BLOCK DIAGRAM

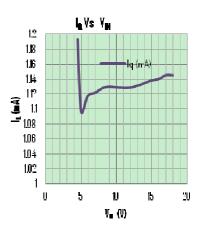
ABSOLUTE MAXIMUM RATING

Parameter		Value		
Input Voltage Range		-0.3V-20V		
SW, EN Voltage		-0.3V to VIN+0.3V		
BST Voltage		–0.3V to SW+6V		
FB Voltage		–0.3V to 6V		
SW to ground curren		Internally limited		
Operating Junction Temperature(Tj)		-40°C –85°C		
Package Thermal Resistance (θjc)	ESOP-8L	10°C / W		
Storage Temperature(Ts)		-40°C - 150°C		

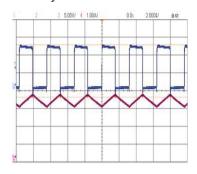
Note: Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

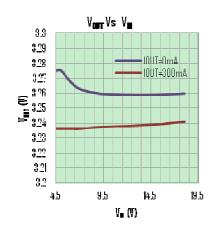

ELECTRICAL CHARACTERISTICS

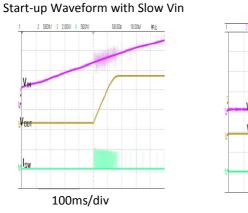

(VIN=12V, unless otherwise specified. Typical values are at $T_A=25$ °C)

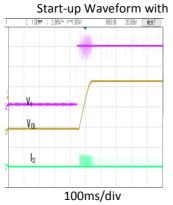

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDD	Input Voltage Range		5		18	V
UVLO_UP	UVLO, IN UVLO Rising	Rising, Hysteresis=140mV		3.55		V
Vref	Feedback Voltage		0.904	0.923	0.942	V
lfb	Feedback Leakage current			0.01		uA
la	Quiescent Current	Active, Vfb=1V, No Switching		1		mA
lq		Shutdown		6		uA
	Error Amp Transconductance			800		μS
	Current Sense Transresistance			0.2		Ω
Fsoc	Switching Frequency	Ven=2V, Vin=12V		340		KHz
RdsonP	PMOS Rdson			120		mohm
RdsonN	NMOS Rdson			100		mohm
Ilimit	Peak Current Limit			3.5		А
Ven	EN Input Low Voltag		1	1.5	2	V
len	EN Input Current				1	μΑ
Isw	SW Leakage Current	VIN=12V,VSW=0 or 12V, EN= GND			10	μA
TSD	Over Temperature Proection			150		°C

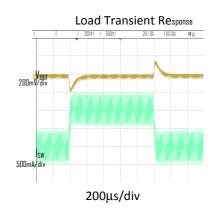
TYPICAL PERFORMANCE CHARACTERISTICS


(Vin=12V, Vout=3.3V, L=10uH, Cin=10uF, Cout=22uF, T_A=25°C, unless otherwise stated)








3A load Switching

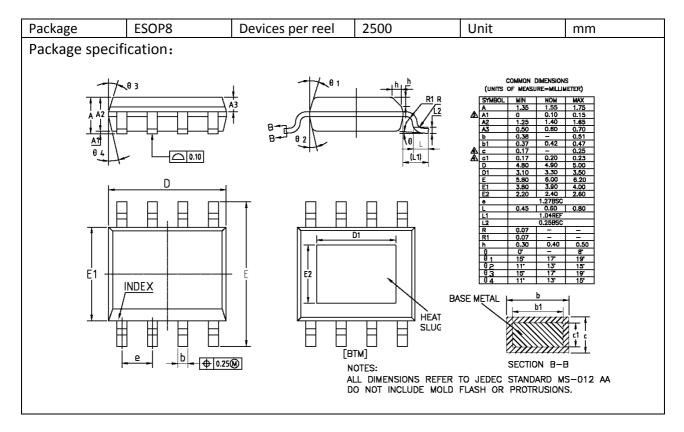
ISM

FUNCTIONAL DECRIPTIONS

Loop Operation

The BL9384 is a wide input range, high-efficiency, DC-to-DC step-down switching regulator, capable of delivering up to 3A of output current, integrated with a 110m Ω synchronous MOSFET, eliminating the need for external diode. It uses a PWM current-mode control scheme. An error amplifier integrates error between the FB signal and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.

Current Limit


There is a cycle-by-cycle current limit on the high-side MOSFET of 3A(typ). When the current flowing out of SW exceeds this limit, the high-side MOSFET turns off and the synchronous rectifier turns on. Unlike the traditional method of current limiting by limiting the voltage at the compensation pin, which usually has large variation due to duty cycle variance, this type of peak current limiting scheme provides a relatively more accurate limit for output current, thereby lowering the requirements for system design.

COMPONENT SELECTRION

When setting up the BL9384 for different output voltage, please use following recommended component value for the best performance.

V _{OUT} (V)	C _{ΟUT} (μF)	L (μΗ)
8	22x2	22
5	22x2	15
3.3	22x2	10
2.5	22x2	6.8
1.8	22x2	4.7
1.2	22x2	3.3

PACKAGE OUTLINE

